Name ________________________ Math 1302 – Exam I – Feb. 16, 2004

1. Give me an example of

 a) the commutative law of multiplication → _______________________

 b) a real number that is not rational → _______________________

 c) a whole number that is not a natural number → _______________________

 d) a trinomial of degree 2. → _______________________

 e) a binomial of degree 2 with only one variable that can not be factored. → _______________________

2. Complete the following by using the

 a) Associative law of addition: (3 + x) + y = ______________

 b) the distributive law: (- 3) (x + b) = ____________________

3. Simplify to a single number in simplest form.

 a) -3² = _______ b) 0² = _______ c) - 25 ⅓ = _______ d) (9/ 25)⁻³² = _______

 e) - 6⁻² = _______ e) (- 2)⁰ = _______ f) (8)²/³ = _______

4. Evaluate if x = -1 and y = -2, z = - 3, and r = 0

 a) x⁵ = _______ b) (y⁻⁵)⁵ = _______ c) \(\frac{x - y}{x + y} \) = _______

5. Find each of the following absolute values. Write without absolute values and without parenthesis or grouping symbols of any kind. Exact answers – no calculator.

 a) 4 - | 4 - 7 | = __________

 b) | 8 - \(\sqrt{50} \) | = __________

 c) - | 4 | - | - 2 | = __________

 d) | 7 - 2\pi | = __________
7. True or False.

__________ a. An irrational number can not be written as a fraction.

__________ b. all whole numbers are positive

__________ c. 1 is the smallest natural number

__________ d. \((x - 2y)^2 = x^2 - 4y^2\)

__________ f. two is the smallest prime number

8. Perform the given operations and simplify.

a) \(2 - 3 \cdot (2 - (4 - 5)) = \) ________________

b) \(4 - 2^2 \cdot (-4 + 8) ÷ 2 = \) ________

9. Use the rules of exponents to simplify

a) \((2x^2)^3 = \) ________________

b) \((4x^2)(-2x^3y) = \) ________________

c) \((-2x^{-3})^2 \cdot (4x^3)^2 = \) _______

d) \((9x^{-2})^{1/2} = \) ________________

e) \((4/3)^2 = \) ____________

f) \(\frac{4x^2y^4}{8xy^7} = \) ____________

g) \(\frac{-4x^{-1}y^{-3}}{2x^{-3}y^2} = \) ________________

h) \(\frac{(-6x^{-2}y^{-3})^2}{2x^2y^{-4}} = \) ______________
10. Use the rules of radicals and fractional exponents to simplify.
 a) \(\sqrt[3]{16x^4y^2} = \) _____________
 b) \(\sqrt[3]{8x^6} = \) _____________
 c) \(4 - 2\sqrt{9} = \) _____________
 d) \((16x^2y^8)^{1/4} = \) _____________

11. Perform the given operation -- Do not factor.
 a) \((3x^2 - 4x + 6) - 2(x^2 - 2x + 3) = \) _________________
 b) \(3x^2y(x + 2y) = \) _________________
 c) \(2x + 3(x + 2) = \) _________________
 d) \((x - 4y)^2 = \) _________________

12. Find the GCF of the following
 a) GCF(80, 120) = _________________
 b) GCF(12x^2y^4, 16xy^5) = _________________

13. Find the LCM of
 a) LCM(24, 30) = _________________
 b) LCM(12xy^2, 8x^3y^4) = _______
14. Factor each of the following polynomials - All of these should factor. Factor completely!

 a) \(x^2 + 4x - 21 = \)__________________
 b) \(3(x - 2y) + 5(x - 2y) = \)__________________
 c) \(5x^4 - 20x^2y^2 = \)__________________
 d) \(x^4 - 16y^4 = \)__________________
 e) \(x^4 - 8x = \)__________________
 f) \(x^2 - 24x + 144 = \)__________________

15. Find the degree of each of the following polynomials.

 a) \(4 \) ➔ __________
 b) \(8^2x^3y^5 \) ➔ __________
 c) \(1 + 5x^8 - 2x^4y^{5} \) ➔ __________

 a) \((9)^{-3/2} = \)__________
 c) \(-8^{2/3} = \)__________

17. A polynomial that has three factors but only one term is called a ________________

 A monomial will always have only one ____________

18. Reduce each of the following algebraic fractions to lowest terms – by factoring and then cancelling.

 a) \(\frac{x^3 + y^3}{x^2 - y^2} = \)__________
 b) \(\frac{3 - xy}{xy - 3} = \)__________
19. More radicals - exact answers required.

a) \(\sqrt[4]{64x^6y^3} \cdot \sqrt[4]{4x^2y} = \) ________

b) \(\sqrt[5]{4x^2y^4} = \) __________

c) \(\sqrt{48} = \) ____

d) \(\sqrt[3]{40} = \) __________

d) \(\sqrt{8} + 2\sqrt{18} = \) ________

20. Even More radicals.

a) \(\frac{6}{\sqrt[3]{9x}} = \) ______________

b) \(\frac{\sqrt[3]{8}}{\sqrt[3]{4}} = \) ________

c) \(\sqrt[3]{4} \cdot \sqrt{2} = \) __________

D) \(\frac{4}{1-\sqrt{5}} = \) __________

e) \(\sqrt[3]{\frac{2}{36x}} = \) __________
21. A dress sells for $65 and there is an 8% sales tax. How much change will you get back if you paid with three twenties and a ten dollar bill?

22. Simplify by using the rules of exponents. No radicals in your final solution. No negative exponents in your final solution.

a) \(x^{1/2} \cdot x^{1/4} = \) __________

b) \(x^{1/4} \div x^{1/2} = \) __________

c) \((-2x^{1/2}y^{-1/2})^{-6} = \) __________

23. If \(x\) is assumed to be any real number then

what is

a) \(\sqrt{x^2} = \) __________

b) \(\sqrt[3]{-x^3} = \) __________

c) \(\sqrt{-4} = \) __________

24. True or False.

a) the absolute value of any real number is never negative. __________

b) There are always two square roots to any positive real number. __________

c) All real numbers are rational. __________