1. True or False.

 a) There are times in which a function is not a relation
 b) All lines that are not vertical lines are functions.
 c) One of these does not represent slope; average rate of change, instantaneous rate of change, \(f'(x) \)

2. We say that a function \(f \) is continuous at \(x = 2 \) provided (make sure to use \(x = 2 \) in your answers)

 a) _____________________________
 b) _____________________________
 c) _____________________________

3. Prove that \(f(x) = \frac{x}{x - 1} \) is continuous at \(x = 2 \).

4. Which of these relations are also functions?

 a) _____________________________

 b) \(y = \log_4 x \)

 c) _____________________________

 d) _____________________________

 \(y^2 = \frac{x + 1}{4} \)

 the top part of a circle with radius 3, center at the origin represented by \(y = \sqrt{9 - x^2} \)
5. Find the domain of

a) the relation listed in problem #4a

b) \(f(x) = \frac{x - 2}{x^2 - 3x + 2} \)

c) \(y = \log_4 x \rightarrow \)

6. Graph each of the following – make sure to find the required items (graph and answer the questions)

a) \(2x - y = 4 \rightarrow \) x-intercept: \(= \) _______ y-intercept: \(= \) _______ slope: \(= \) _______

b) \(g(x) = 2x^2 - 8x \rightarrow \) x-intercept: \(= \) _______ vertex: \(= \) _______

7. Find the points at which the following functions are discontinuous.

a) \(f(x) = \frac{x + 2}{5} \rightarrow \)

b) \(g(x) = \frac{x^2 + 2x}{x + 2} \rightarrow \)

c) \(h(x) = \frac{2x}{x^2 + 1} \) if \(x \geq 1 \)

\(\rightarrow \) \(\) if \(x < 1 \)
8. What is the range of
 a) \(y = |2x - 6| \) → __________________________
 b) \(y = -2 \) → __________________________

9. What is the y-intercept of \(y = 4^x \)? → ________________

10. Given the following functions – answer the questions that follow.
 \(f(x) = \frac{x + 2}{x^2 - 4} = \frac{x + 2}{(x + 2)(x - 2)} \)
 \(g(x) = \frac{x - 1}{x + 2} \) if \(x < 3 \)
 \(t(x) = -4 \)

 a) \(f(2) = \) ____________
 b) \(\lim_{x \to 2} f(x) = \) ________
 c) \(\lim_{x \to 3} g(x) = \) ________

 c) \(g(0) = \) ____________
 d) \(g(3) = \) ________
 e) \(\lim_{x \to 3^+} g(x) = \) ________

 f) \(t(5) = \) ________
 h) \(\lim_{x \to 3} t(x) = \) ____________

 i) the derivative of \(t(x) \) → \(t'(x) = \) ____________
 j) the instantaneous rate of change of \(t(x) \) at \(x = 3 \)
 \(I_{ic} = \) ____________
11. The average rate of change of \(f(x) \) as \(x \) changes from \(x = 1 \) to \(x = 3 \) can best be described by what ratio using the numbers listed here.

Write it out:

12. Find each of the following limits

a) \(\lim_{h \to 4} 3h = \) __________

b) \(\lim_{x \to 2} \frac{2}{3} = \) __________

c) \(\lim_{x \to \infty} 3x = \) __________

d) \(\lim_{x \to \infty} \frac{2}{x^2} = \) __________

e) \(\lim_{x \to -1} \frac{x}{x - 1} = \) __________

f) \(\lim_{x \to 3} \frac{x^2 - 2x - 3}{x - 3} = \) __________

g) \(\lim_{x \to \infty} \frac{x^2 + 2}{3x^2 + 4} = \) __________

h) \(\lim_{h \to 0} \frac{2x + h}{h} = \) __________

13. Find the derivative of each function

a) \(f(x) = 4x - 2x^3 \) \(\rightarrow f'(x) = \) __________

b) \(g(x) = (3x^2 + 2)(2 - 3x^3) \) \(\rightarrow g'(x) = \) __________

c) \(h(x) = \frac{3 - 2x}{4x + 5} \) \(\rightarrow h'(x) = \) __________
16. Use the following figure to answer the questions that follow.

![Graph Image]

a) \(f(2) = \) ____________

b) \(f(0) = \) ____________

c) at what \(x \) is \(f(x) = 2 \) → ____________

mark it on the graph

d) \(\lim_{{x \to \infty}} f(x) = \) ____________

e) \(f(-2) = ? \) ____________

f) at what \(x \)'s is the function not continuous? ____________

17. Let \(C(x) = 3x + 30 \) represent the cost of producing \(x \) items

\(R(x) = 5x - 60 \) represent the revenue generated by producing \(x \) items

a) Find the profit equation. Keep in mind that \(P(x) = R(x) - C(x) \)

b) Find the marginal cost.

c) Find the cost in producing 10 items.

18. What is the equation of

a) a line with slope 3 that passes through the point (2, -1). ____________

b) line that does has slope zero and passes through the point (-3, 4) ? ____________
19. Find \(x \) if

 a) \(x = 3^4 \)
 b) \(\log_3 27 = x \)

20. You are given a function \(f(x) \) so that \(f'(x) = 5x \)

 Find the instantaneous rate of change at \(x = 4 \)

21. Sketch the graph of

 \(y = |2 - 4x| \)

22. Show me a graph in which the instantaneous rate of change at \(x = 3 \) is zero.