Transcendental Functions

Trig. functions –

Graphs:
\[y = \sin x \quad y = \cos x \]
\[y = \tan x \quad y = \sec x \]
\[y = \cot x \quad y = \csc x \]

\[f(x) = a \sin(bx + c) \]
Sine curve with amplitude = __________, period = _______ and shift = __________

Similar for \[f(x) = a \cos (bx + c) \]

Similar for \[f(x) = a \tan(bx + c) \]
Problem#28 page 189
A jet aircraft on landing makes a sound with the equation $150 \sin 1000\pi t$, measured in decibels while t is measured in seconds. What is the frequency of the sound? What is the amplitude?

Which of the six basic trig functions is even and which is odd?

odd: _________________________________ even:________________________________

Recall:

Identities:
\[
\cos^2 x + \sin^2 x = 1 \\
1 - 2\sin^2 x = 1 \\
2\cos^2 x - 1 = 1 \\
\cos^2 x - \sin^2 x = 1
\]

A point on the unit circle with coordinates $P(x,y)$ can be written in terms of the cosine and sine function.
Exponential and Logarithmic Functions

\[f(x) = 2^x \] and in general \[g(x) = a^x, \ a > 0, \ x \text{ is a real number} \]

Table Method:

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>-1</th>
<th>-2</th>
<th>-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(x)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

y-axis

x-axis

Domain: ________________ Range: ________________
x-int: ______ y-intercept: ______ Are there any asymptotes? ________________

Variations of this type of exponential functions.

\[f(x) = 2^x \]
\[f_2(x) = -2^x \]
\[f_3(x) = -2^{-x} \]

Examples:

1. #14 and #15/194

\[A = Pe^{0.1000t} \]: A-amount present after \(t \) years if \(P \) dollars are invested at \(r \) percent -- If you invest $1000 at 10% per year compounded continuously, how much will be in the account after 2 years?

2. \(f(t) = \begin{cases}
 t^2 & \text{if } 0 \leq t \leq 2 \\
 t + 2 & \text{if } 2 < t \leq 3 \\
 100.5e^t & \text{if } 3 < t
\end{cases} \) How many cases were there in the fifth and seventh week?

y: new cases of influenza measured in hundreds, \(r \): time in weeks
Application of exponential functions – Hyperbolic Functions.

ex. We do not really need any help in graphing $y = 2x + 3$. Think of this function as the sum of two functions.

$y = (2x) + (3) \rightarrow f(x) = 2x$ and $g(x) = 3$.

Graph this individually – and then combine them to get the graph of $y = 2x + 3$

Try the same approach to graph each of the following functions.

$y = \frac{e^x + e^{-x}}{2}$ and $y = \frac{e^x - e^{-x}}{2}$

$y = e^{x/2} + \frac{e^x}{2}$

$f(x) = e^{x/2}$ and $g(x) = \frac{e^x}{2}$

We define

\[\sinh x = \quad \text{and} \quad \cosh x = \]

\[\text{hyperbolic sine} \quad \text{hyperbolic cosine} \]
Relationships between trig functions and hyperbolic functions

1. Areas: page 193(text)

2. Identities: similar – but not exact

Graphs of hyperbolic trig. functions. (asymptotes ?)

\[y = \sinh x \quad y = \cosh x \]

\[y = \tanh x \]
Logarithms
From algebra or trigonometry you remember logarithms;

We write \(y = \log_b x \) and say “the logarithm of \(x \) base \(b \) is equal to \(y \)” to mean

\(y \) is an exponent (the logarithm is an exponent) so that \(b^y = x \), \(b > 0 \).

ex. \(\log_3 81 = \) _______ \(\log_{10} 100 = 0 \)

ex. What must \(x \) be so that

\(\log_b 32 = -5 \)
\(\log_{1/4} x = 2 \)

Graph of a logarithm. Sketch the graph of \(y = \log_2 x \)

\(f(x) = \log_2 x \) and in general \(g(x) = \log_b x \), \(b > 0 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>-2</th>
<th>(1/2)</th>
<th>(1/4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Domain: ________________ Range: ________________ x-int: ________ y-intercept: ________

Properties:
1. \(\log(xy) = \log x + \log y \)
2. \(\log(x/y) = \log x - \log y \)
3. \(\log x^y = y \log x \)

Special bases:
common logarithm: if \(b = 10 \) → we write
natural logarithm: if \(b = e \) (irrational #) → we write
Other examples:

#49/page 201

\[\log x + \log (x +1) = \]

Inverses: not the same as reciprocals

We say that functions \(f(x) \) and \(g(x) \) are inverses if \(f(g(x)) = g(f(x)) = x \) for every \(x \) in the domain of \(f \) and \(g \).

ex. \(f(x) = 2x - 1 \)

ex. \(f(x) = \sin x \)

ex. \(f(x) = 2^x \)

Recall:

\[
\begin{align*}
f(x) &= \frac{e^x - e^{-x}}{2} \\
g(x) &= \frac{e^x + e^{-x}}{2}
\end{align*}
\]

Even, odd, neither? Symmetry?
Polar Coordinates –
Need a ray: polar axis, pole
points on a plane can be described in terms of rectangular coordinates or as polar coordinates

In this setting we describe the points in terms of the distance from the pole, \(r \), and a trigonometric angle, \(\theta \), in the order \((r, \theta)\).

If \(r > 0 \) we plot the point on the terminal side of \(\theta \), but if \(r < 0 \), then we plot on the mirror image (across the origin) of the terminal side of \(\theta \).

Graph on a polar coordinate system

a) label the polar axis, \(\theta = 90^\circ \), \(\theta = 180^\circ \), and \(\theta = 270^\circ \) and the pole

b) plot the points; \(A(3, 90^\circ) \), \(B(4, 135^\circ) \), \(C(4, -180^\circ) \), \(D(-4, 45^\circ) \), \(E(-2, -45^\circ) \)

Radians <-> Degrees

Remember that \(2\pi \) radians = \(360^\circ \) \(\Rightarrow \pi \) radians = \(180^\circ \) so \(\Rightarrow \pi \) radians / \(180^\circ \) = \(1 = 180^\circ / \pi \) radians

Change to radians:

\[135^\circ \implies \ ______ \quad \quad \quad \quad \quad -720^\circ \implies \ ______ \quad \quad \quad \quad \quad 2^\circ \implies \ ______ \]
Change to degrees: (radians is implied)

\[
\frac{5\pi}{7} \text{ radians} \implies \text{__________} \quad -6\pi \implies \text{__________} \quad 1 \text{ radian} \implies \text{______}
\]

There is a relationship between polar coordinates and rectangular coordinates. Superimpose the two coordinate systems on some point \(P\).

\[
\text{P}(x, y) \text{ and } P(r, \theta) \text{ represent the same point on a plane. They are related in the following way}
\]

\[
x = r\cos \theta \quad \text{and} \quad y = r\sin \theta
\]

- these are used to change from polar to rectangular coordinates (variables if you are given an equation)

\[
x^2 + y^2 = r^2, \quad \tan \theta = \frac{y}{x} \quad \text{--- these are used to change from rectangular to polar coordinates}
\]

(change from polar variables in an equation to rectangular variables)

Ex. Change to polar coordinates

\[
\left(-4, 4 \right) \implies \text{__________} \quad \left(0, -4 \right) \implies \text{__________}
\]

\[
\left(3, 3\sqrt{3} \right) \implies \text{__________}
\]

Ex. Change to rectangular coordinates

\[
\left(3, 225^\circ \right) \implies \text{__________} \quad \left(-4, \frac{\pi}{3} \right) \implies \text{__________}
\]

\[
\left(2, -135^\circ \right) \implies \text{__________}
\]
Ex. Write as an equation with polar coordinates (variables)

\[x + 2y = 4 \]
\[x = 3 \]
\[y = -2 \]
\[4x^2 + 4y^2 = 16 \]
\[ax + by = c \]

Ex. Write as an equation with rectangular coordinates

\[r = -2 \]
\[r = 2 \cos \theta \]
\[r = 2 \sin \frac{\pi}{6} \]
\[r^2 = 2 \sin \theta \]
\[r = 2 / (1 - \cos \theta) \]
Additional Examples.

Ex. Change to polar coordinates

\[x = 4 \Rightarrow ______________________ \quad y = -2 \Rightarrow ______________________ \]

\[2x - y = 4 \Rightarrow ______________________ \quad x^2 + y^2 = 16 \Rightarrow ______________________ \]

\[y^2 = 2x + 2 \Rightarrow ______________________ \quad 4x^2 + y^2 \Rightarrow ______________________ \]

\[x^2 - y^2 = 1 \Rightarrow ______________________ \]

Ex. Change to rectangular coordinates

\[r = -5 \Rightarrow ______________________ \quad \theta = -1 \Rightarrow ______________________ \]

\[r \sin \theta = -1 \Rightarrow ______________________ \quad r = \sqrt{2} \sin 45^\circ \Rightarrow ______________________ \]

\[r = ______________________ \Rightarrow ______________________ \]

Graph of some functions in polar coordinates - construct a table of values and plot them just like we do with rectangular coordinates.

ex. graph \(r = 2 \sin 3 \theta \).

<table>
<thead>
<tr>
<th>(\theta) (degrees)</th>
<th>0</th>
<th>10(^o)</th>
<th>15(^o)</th>
<th>20(^o)</th>
<th>30(^o)</th>
<th>....</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta) (radians)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(r = 2 \sin 3 \theta)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Other Special Curves.

Rose Curves:
\[r = a \sin n \theta \quad r = a \cos n \theta \] with \(n > 1 \) rose curve with either \(n \) loops (if \(n \) is odd) or \(2n \) loops if \(n \) is even.

ex. see above. \(r = 2 \sin 3 \theta \) \hspace{1cm} \text{ex. } r = 4 \cos 2 \theta

Limacon

Cartesian equation: \((x^2 + y^2 - 2ax)^2 = b^2 (x^2 + y^2) \)
Polar equation: \(r = b + 2a \cos (\theta) \)

We will use the form: \(r = b + a \sin \theta \quad r = b + a \cos \theta \)

a) if \(b > a \) (absolute value of each), then we have a curve surrounding the origin. See page 220 (not a circle)

ex. \(r = 3 + \sin \theta \quad r = -4 + \sin \theta \quad r = 3 - \cos \theta \quad r = -2 + \cos \theta \quad r = -3 - \sin \theta \)

b) if \(b < a \) (absolute value of each), we have a curve with an inner loop. See page 229

ex. \(r = 2 + 4 \sin \theta \quad r = -2 + 6 \cos \theta \quad r = -2 - 5 \sin \theta \)
Limacon

c) if \(b = a \) (absolute value of each), then we have a **cardioid**. See page 224

ex. \(r = 3 + 3 \sin \theta \) \hspace{1cm} r = -2 + 2 \cos \theta \hspace{1cm} r = -1 + \cos \theta

Lemniscate: \(r^2 = a^2 \sin 2\theta \) or \(r^2 = a^2 \cos 2\theta \)

has two dumbbells either on the \(\theta = 0^\circ \) or on \(\theta = 45^\circ \). See page 230 and 231

ex. \(r^2 = 4 \sin 2\theta \) \hspace{1cm} ex. \(r^2 = 25 \cos 2\theta \)

Concentrate on the equation \(r^2 = 4 \sin 2\theta \)

What would happen if \(\theta \) is chosen in such a way that \(\sin 2\theta < 0 \)?

Using the discussion above explain if \(r^2 = -4 \sin 2\theta \) would have a graph? If so, what would it look like?
1. Write in terms of polar coordinates (variables – r, \(\theta \))
 a) \(x^2 + y^2 = 16 \) \(\Rightarrow \) ____________
 b) \(x = 4y \) \(\Rightarrow \) ____________

2. Write in terms of x and y. (From Polar to Rectangular)
 a) \(r = -2 \) \(\Rightarrow \) ____________
 b) \(x \sin \theta = -2 \) \(\Rightarrow \) ____________

3. Sketch the graph of (Polar Coordinates)
 a) \(\theta = -45^\circ \)
 b) \(r = 4 \sin 45^\circ \) \(\Rightarrow \) ____________
 c) \(r \sin \theta = 2 \)

4. There are three types of limacons; “fat circles”, inner loop, and ________________

5. There are two types of lemniscates; \(r^2 = a^2 \sin 2\theta \) with axis of symmetry is \(\theta = 45^\circ \) and ________________ with axis of symmetry on the polar axis.

6. Describe in some detail (words) as to what the graph of the following curve looks like;
 \(r = 4 \sin 4\theta \)

7. Eliminate the parameter in each of the following equations.
 a) \(x = 2t - 1 \) and \(y = 4t \)
 b) \(x = 2\sin \theta \) and \(y = \cos \theta \)