1. Whenever possible (the problem allows you to find) find
x and y intercepts, asymptotes (describe which kind and its equation(s)) Use this information to graph.

#10/164
a) \(y = 10(x - 4)(x + 1)(x + 3) \)

#3/164
b) \(y = x^2(4 - x) \)

mine

c) \(y = \frac{x^2 - 4}{4x + 8} \)

#1/169
d) \(xy - x + 3 = 0 \)

#7/169
e) \(y = \frac{x^2 - 9}{x^2 - 4} \)

mine

f(x) = \(\frac{2x}{x^2 - 2x} \)
2. More graphs
 a) \#2/173
 \[xy - x^2 + 3 = 0 \]

 b) \[y = \frac{x^2 - 3x - 4}{x - 2} \]

 c) \[y^2 = \frac{x}{x + 3} \]

 d) \[y^2 = \frac{x^2 - 9}{x^2 - 25} \]

3. Exponential Functions.
 Give me some examples of transcendental functions. ____________________________

4. Sketch the graph of
 \[y = -e^x \]
 \[y = \cosh x \]
5. Other graphs.

\[y = \sinh x \quad y = \frac{e^x - e^{-x}}{e^x + e^{-x}} \]

6. Find the domain of

\[y = \sinh x \]

7. What is the range of

\[y = \cosh x \quad y = \tanh x \quad y = \sinh^2 x \]

8. Write down the definition of \(\cosh x \), \(\sinh x \), and \(\tanh x \)

9. Use the definitions above to

 a) show \(\cosh x + \sinh x = ? \) \(\cosh x - \sinh x = ? \)

 b) prove \(\cosh^2 x - \sinh^2 x = 1 \)

10. Find \(x \) if

\[3 = \log_2 x, \quad x = \quad \log_{10} 1000 = \]

\[\log_3 x = \quad \log_3 1 = \]

11. Sketch the graph of \(y = \log_2 x \)