Contents

1 Set Theory .. 2
 1.1 Sets, Subsets, Intersection, and Union 2
 1.2 Three Assignment Set/Subset/Equality Theorems 3
 1.3 Cartesian Products, Cardinality, Denumerable 3
 1.4 Two Assignment Cartesian Product Theorems 4
 1.5 Non-denumerable Sets, the Continuum Hypothesis, and Power Sets 5

2 Topology .. 6
 2.1 Definition of Topology, Discrete Topology, Trivial Topology 6
 2.2 Eight Topologies 7
 2.3 Closed Set, Set of All Closed Sets, Closure, Interior 8
 2.4 Five Properties of Closure, Five Properties of the Interior 8
 2.5 Two Assignment Theorems About Closure and the Interior 10
 2.6 Neighborhood, Neighborhood System, 3 Theorems of \mathcal{U}_x 10
 2.7 Neighborhood Base, 2 Theorems 11
 2.8 Assignment 6 Neighborhood Base Theorem 12
 2.9 Accumulation Points, The Sorgenfrey Line 12
Chapter 1

Set Theory

1.1 Sets, Subsets, Intersection, and Union

Definition 1.1.1 (Set - Intuitive)
A set is a collection of distinct objects.

Notation 1.1.1 (Important Sets)
\(\mathbb{N} \) - the natural numbers, \{1, 2, 3, 4, \ldots\}
\(\mathbb{R} \) - the real numbers
\(\mathbb{R}^n \) - Euclidean n-space
\(\mathbb{Q} \) - the rational numbers
\(\mathbb{I} \) - the irrational numbers
\(I \) - the closed interval [0, 1]

Notation 1.1.2
\(\in \) - "Is an element of."
\(\subseteq \) - "Is a subset of."
\(\cup \) - Union
\(\cap \) - Intersection
\(B - A = \{x | x \in A \text{ and } x \in B\} \). (We say that \(B - A \) is the complement of \(A \) in \(B \)).

Theorem 1.1.1
If \(K \subseteq M \subseteq T \) then \(K \subseteq T \)
Theorem 1.1.2
If $A \subset B$ then $B - (B - A) = A.$

Definition 1.1.2 (Arbitrary Unions and Intersections)
Let Λ be any set (the index set). For each $\lambda \in \Lambda$ we will define another set B_λ.

We define $\bigcap B_\lambda = \{x \mid x \in B_\lambda \text{ for each } \lambda \in \Lambda\}.$

We define $\bigcup B_\lambda = \{x \mid \text{There is some } \lambda \in \Lambda \text{ such that } x \in B_\lambda\}.$

1.2 Three Assignment Set/Subset/Equality Theorems

Theorem 1.2.1
Suppose that $A \subset U$ and $B \subset U$.

1. If $A \subset B$ then $(U - B) \subset (U - A)$.
2. If $A \subset B$ then $(A \cup B) = B$
3. If $A \subset B$ then $(A \cap B) = A$

1.3 Cartesian Products, Cardinality, Denumerable

Definition 1.3.1 (Cartesian Product)
Let A and B be nonempty sets. We define $A \times B = \{(a, b) \mid a \in A$ and $b \in B\}$.

Let A_1, A_2, \ldots, A_n be nonempty sets. We define:
$A_1 \times A_2 \times \ldots \times A_n = \{(a_1, a_2, \ldots, a_n) \mid a_i \in A_i \text{ for each } i\}.$
Definition 1.3.2 (One-to-one Correspondence)

Let A and B be nonempty sets. We say that there is a one-to-one correspondence between A and B if there is a subset C of A × B so that for any a ∈ A there is exactly one pair (a, b) ∈ C and for any b ∈ B there is a pair (a, b) ∈ C.

N.01.15.2003

Definition 1.3.3 (Same Cardinality)

We say that two sets have the same cardinality if there is a one to one correspondence between them or both sets are empty.

N.01.15.2003

Definition 1.3.4 (Finite Set)

A set A is finite if there is some n so that there is a one-to-one correspondence between A and \{1, 2, 3, 4, \ldots , n\}.

N.01.15.2003

Definition 1.3.5 (Denumerable)

A set A is denumerable if A is finite or there is a one-to-one correspondence between A and \mathbb{N}.

N.01.15.2003

Theorem 1.3.1

The set of positive even numbers is denumerable

N.01.15.2003

Theorem 1.3.2

The positive rational numbers are denumerable.

N.01.15.2003

Theorem 1.3.3

A denumerable union of denumerable sets is denumerable.

N.01.15.2003

Note 1.3.1

We say that the reals have the power of the continuum.

N.01.15.2003

1.4 Two Assignment Cartesian Product Theorems
Theorem 1.4.1

1. If A and B are finite then $A \times B$ is finite.
2. If A and B are denumerable then $A \times B$ is denumerable.

1.5 Non-denumerable Sets, the Continuum Hypothesis, and Power Sets

Theorem 1.5.1 (Trey’s Favorite)
The interval $(0, 1)$ is non-denumerable.

Definition 1.5.1 (Cardinality of c)
Define c to be the cardinality of $(0, 1)$.

Theorem 1.5.2
$$|(0, 1)| = |\mathbb{R}|$$

Definition 1.5.2 (The Power Set)
We define the Power Set of A, $\mathcal{P}(A)$, to be the set of all subsets of A.

Theorem 1.5.3
If $|A| = n$ then $|\mathcal{P}(A)| = 2^n$.

Theorem 1.5.4
For any A, $|\mathcal{P}(A)| > |A|$.
Chapter 2

Topology

2.1 Definition of Topology, Discrete Topology, Trivial Topology

Definition 2.1.1 (Topology)
Let X be a set. We define a topology $\tau \subset \mathcal{P}(X)$, where τ is the collection of open sets for the topology if the following conditions are met.

1. \emptyset and X are both in τ.
2. τ is closed under unions.
3. τ is closed under finite intersections.

Topology 2.1.1 (The Discrete Topology)
Let $\tau = \mathcal{P}(X)$. We call τ the discrete topology on X.

Topology 2.1.2 (The Trivial Topology)
Let $\tau = \{X, \emptyset\}$. This is the trivial topology on X.

Topology 2.1.3 (The usual topology on \mathbb{R})
Let $\tau = \{X, \emptyset\} \cup \{(a, b) | a < b\} \cup$ sets of the form $\{(a, b) | a < b\}$.

N.01.22.2003
2.2 Eight Topologies

Topology 2.2.1

1. (Kyle Elkins) Two-point Irrational Topology. \(X = P, \tau = \{X, \phi, \{\pi, e\}\}\)

2. (Cody Mitchell) Polynomial Topology. Let \(X = \{P_0, P_1, P_3, \ldots\}\) be an enumeration of polynomials with rational coefficients.
\[
\tau = \{\phi, X, \{P_0\}, \{P_0, P_1\}, \{P_0, P_1, P_2\}, \ldots\}
\]

3. (Don Gray) Twin-Prime, Maybe-It’s-Infinite Topology. \(X = \) the set of prime numbers.
\[
\tau = \{X, \phi\} \cup \{A \mid A = \{P_1, P_2, \ldots\} \text{ where } P_1, P_2, \ldots \text{ are each the sum of two primes.}\}
\]

4. (Paul Dawkins) The Usual Topology Defined Unusually. \(X = \mathbb{R}, \tau = \{(a, b) \mid a, b \text{ are rational}\} \cup \{X, \phi\} \cup \text{ unions of such sets.}\)

5. (Dan McCown) The Bullseye Topology. \(X\) is the real plane. \(\tau = \{X, \phi, A_\lambda, \bigcup A_\lambda\}\) where \(A_\lambda\) is a disc that includes the edge centered at 0 of radius \(\lambda\) with \(\lambda \in \mathbb{N}\)

6. (James Versyp) The Refined Bullseye Topology. \(X\) is the real plane. \(\tau = \{X, \phi, A_\lambda, \bigcup A_\lambda\}\) where \(A_\lambda\) is a disc that includes the edge centered at 0 of radius \(\lambda\) with \(\lambda \in \mathbb{R}^>0\)

7. (Ellen Ellis) The I Don’t Like 0 Topology. \(X = (-1, 0) \cup (0, 1)\).
\[
\tau = \{(-1/n, 0) \cup (0, 1/n) \mid n \in \mathbb{N}\} \cup \{\phi\}
\]

8. (Dustin Butts) The Half-Line Topology. \(X = \mathbb{R}\).
\[
\tau = \{\phi, X\} \cup \{(x, \infty) \mid x \in \mathbb{R}\}
\]
2.3 Closed Set, Set of All Closed Sets, Closure, Interior

Definition 2.3.1 (Closed Set)
Let \(\tau \) be a topology on a set \(X \). We say that a set \(K \) is closed if \(X - K \) is open.

Definition 2.3.2 (3 Properties of \(C \))
Let \((X, \tau)\) be a topology with the set \(C \) (where \(C \) contains all of the closed sets).

1. \(X, \emptyset \in C \).
2. \(C \) is closed under arbitrary intersections.
3. \(C \) is closed under finite unions.

Definition 2.3.3 (Closure and Interior)
Let \((X, \tau)\) define a topology and let \(A \subset X \).

1. Let \(\Lambda \) be the index set for all sets \(K_\lambda \) so that \(K_\lambda \) is closed and \(A \subset K_\lambda \). We define the closure of \(A \) by \(A = \bigcap K_\lambda \).
2. Let \(\Lambda \) be the index set for all sets \(G_\lambda \) so that \(G_\lambda \) is open and \(G_\lambda \subset A \). We define the interior of \(A \) by \(A^\circ = \bigcup G_\lambda \).

Note 2.3.1
Closure - The smallest closed set containing \(A \).

Interior - The largest open set in \(A \).

2.4 Five Properties of Closure, Five Properties of the Interior
Theorem 2.4.1
Let (X, τ) be a topology with $A, B \subset X$.
If K is any closed set containing A then $\overline{A} \subset K$.

(jv) If $A \subset K_{closed}$ then $\overline{A} \subset K_{closed}$.

Theorem 2.4.2
Let (X, τ) be a topology with $A, B \subset X$.
If $A \subset B$ then $\overline{A} \subset \overline{B}$.

Theorem 2.4.3
Let (X, τ) be a topology with $A, B \subset X$.
$\overline{A} = \overline{A}$

Theorem 2.4.4
Let (X, τ) be a topology with $A, B \subset X$.
$\overline{A \cup B} = \overline{A} \cup \overline{B}$

Theorem 2.4.5
Let (X, τ) be a topology with $A, B \subset X$.
$\emptyset = \emptyset$

Theorem 2.4.6
Let (X, τ) be a topology with $A, B \subset X$.
If G is any open set contained in A then $G \subset A^\circ$.
(jv) If $G_{open} \subset A$ then $G_{open} \subset A^\circ$

Theorem 2.4.7
Let (X, τ) be a topology with $A, B \subset X$.
If $A \subset B$ then $A^\circ \subset B^\circ$.

Theorem 2.4.8
Let (X, τ) be a topology with $A, B \subset X$.
$(A^\circ)^\circ = A^\circ$

Theorem 2.4.9
Let (X, τ) be a topology with $A, B \subset X$.
$(A \cap B)^\circ = A^\circ \cap B^\circ$

Theorem 2.4.10
Let (X, τ) be a topology with $A, B \subset X$.
$X^\circ = X$
2.5 Two Assignment Theorems About Closure and the Interior

Theorem 2.5.1

1. \(A \subset \overline{A} \).
2. \(A^\circ \subset A \).

\(\text{A.04} \)

Theorem 2.5.2

Let \((X, \tau)\) be a topology with \(A, B \subset X\).

1. \(\overline{A \cap B} \) may or may not be equal to \(\overline{A} \cap \overline{B} \)
2. \(\overline{X} = X \)
3. \((A \cup B)^\circ \) may or may not be equal to \(A^\circ \cup B^\circ \)
4. \(\phi^\circ = \phi \)

\(\text{A.05} \)

2.6 Neighborhood, Neighborhood System, 3 Theorems of \(U_x \)

Definition 2.6.1 (Neighborhood (nhood))

Let \((X, \tau)\) be a topology and \(x \in X\). We say that a set \(U\) is a neighborhood of \(X\) if and only if \(x \in U^\circ\).

\(\text{N.02.03.2003} \)

Note 2.6.1

1. A nhood for \(x\) is not necessarily open.
2. Just because \(x \in U\) does not mean that \(U\) is a nhood of \(x\).

\(\text{N.02.03.2003} \)
Definition 2.6.2 (Neighborhood System)

We define the neighborhood system of x as the set

$$\mathcal{U}_x = \{U | U \text{ is a nhood of } x\}.$$

Theorem 2.6.1

Let (X, τ) be a topology, $x \in X$, and $U \in \mathcal{U}_x$. Then $x \in U$.

Theorem 2.6.2

Let (X, τ) be a topology, $x \in X$, and $U \in \mathcal{U}_x$. Suppose U and V are both in \mathcal{U}_x. Then $U \cap V \in \mathcal{U}_x$.

Theorem 2.6.3

Let (X, τ) be a topology, $x \in X$, and $U \in \mathcal{U}_x$. If $U \in \mathcal{U}_x$ and $U \subset V$ then $V \in \mathcal{U}_x$.

2.7 Neighborhood Base, 2 Theorems

Definition 2.7.1 (Neighborhood Base)

Fix a point $x \in X$. We say that $\mathcal{B}_x \subset \mathcal{U}_x$ is a nhood base for x if the following 2 conditions hold.

1. Each $V \in \mathcal{B}_x$ is open.

2. For any $U \in \mathcal{U}_x$ there is some $V \in \mathcal{B}_x$ so that $V \subset U$.

Theorem 2.7.1

Let \mathcal{B}_x be a nhood base for x with V_1 and V_2 in \mathcal{B}_x. Then there is some V_3 in \mathcal{B}_x so that $V_3 \subset (V_1 \cap V_2)$.

Theorem 2.7.2

G is open if and only if for each $x \in G$ there is some $V \in \mathcal{B}_x$ so that $x \in V \subset G$.

11
2.8 Assignment 6 Neighborhood Base
Theorem

Theorem 2.8.1
If (X, τ) is a topology where for each $x \in X$ and $B_x = \{\{x\}\}$ is a
hood base, then τ is the discrete topology.

2.9 Accumulation Points, The Sorgenfrey
Line

Definition 2.9.1 (Accumulation Points)
We say that x is an accumulation point for a set A (or a cluster
point) if and only if for any $V \in B_x$ we have that there is some
point in $V \cap A$ which is different than x.

Topology 2.9.1 (The Sorgenfrey Line)
$X = \mathbb{R}$ and $\tau = \{X, \emptyset\} \cup \{[a, b) | a < b\} \cup$ (arbitrary unions in such
sets).