Introduction to Abstract Mathematics

Review for Test 3

1. Determine if the following relations on \(\mathbb{N} \) are reflexive, symmetric, transitive, and/or antisymmetric. Also, determine if the relation is an equivalence relation, a partial ordering, a linear ordering, or none of these.

 (a) \(aRb \) if \(a < b \)
 (b) \(aRb \) if \(a \leq b \)
 (c) \(aRb \) if \(a + b < 10 \)
 (d) \(aRb \) if \(5 | (a + b) \)
 (e) \(aRb \) if \(b = a^2 \)

2. Define a relation \(R \) on \(\mathbb{N} \) by \(aRb \) if \(a | b \). Prove that \(R \) is a partial ordering.

3. Recall that we define the relation \(<\) on \(\mathbb{Z} \) by \(a < b \) if \(b - a \in \mathbb{N} \). Use this (and P1-P8, Q1-Q9 in section 5.1) to prove that if \(a < b \) then \(-a > -b \).

4. Consider the statement \(S \): If the sum of three integers is less than 30, then at least one of the three is less than 10.

 (a) Rewrite \(S \) using variables and mathematical symbols.
 (b) State the contrapositive of \(S \).
 (c) Prove or disprove \(S \).
 (d) State the converse of \(S \). Prove or disprove.

5. Prove that there is no largest element of \(\mathbb{N} \)

6. Use induction to prove each of the following.

 (a) For all \(n \geq 2 \), \(n^n > n! \)
 (b) \(1 + 3 + 5 + \cdots + (2n - 1) = n^2 \)
 (c) \(1 + 5 + 5^2 + \cdots + 5^n = \frac{5^{n+1} - 1}{4} \)

7. Prove that \(\sum_{k=0}^{n} \binom{n}{k} = 2^n \)

8. Prove that \(n^2 + n \) is even for all \(n \in \mathbb{N} \).

9. Prove that 3 divides \(4^n - 1 \) for all \(n \in \mathbb{N} \).
10. Compute $d = (846, 1314)$. Find x and y s.t. $846x + 1314y = d$.

11. Prove that for any integer n, $(n - 1, n) = 1$.

12. Prove that if n is an odd integer, then $(n, n + 2) = 1$.

13. Prove that if $(a, c) = (b, c) = 1$ then $(ab, c) = 1$.

14. Prove or provide a counterexample for the statement: If $(a, c) = (b, c) = 1$ then $(a + b, c) = 1$.

15. Prove that $\sqrt{7}$ is irrational.

16. Prove that there are infinitely many prime numbers.

17. Prove that $\log_{10} 7$ is irrational.

18. Prove that if x is even, then $x^2 \equiv 0$.

19. Prove that there are no integers such that $x^2 = 8y + 3$.

20. For each of the following, write your answer in the form $[a]$ where $0 \leq a < 11$.

 (a) $[677]$ (mod 11)
 (b) $[57] + [69]$ (mod 11)
 (c) $[57][69]$ (mod 11)

21. Find a bijection to demonstrate that the even natural numbers form a countably infinite set.

22. Find a bijection to demonstrate that \mathbb{Z} is a countably infinite set.

23. Suppose you have an injective function $f : A \to \mathbb{N}$. Prove that A is countably infinite.