FACULTY INFORMATION

- **Dr. Kyle Beran**
 Office: CAV 102B
 Phone: 486-6663
 E-mail: Kyle.Beran@angelo.edu
 Office Hours: MWF 2-3, TR 11-12, or by appointment

- **Mr. Kevin Boudreaux**
 Office: CAV 207B
 Phone: 486-6623
 E-mail: Kevin.Boudreaux@angelo.edu
 Office Hours: MWF 10-11, TR 11-12, or by appointment; Review sessions W 5 pm

- **Dr. David Carter**
 Office: CAV 218
 Phone: 486-6626
 E-mail: David.Carter@angelo.edu
 Office Hours: M 1:30-3 pm; W 8-9:30, R 9:30-11:30 or by appointment

- **Dr. Edith Osborne**
 Office: CAV 204A
 Phone: 486-6629
 E-mail: Edith.Osborne@angelo.edu
 Office Hours: MWRF 11-12, M 1-2

- **Dr. Gregory Smith**
 Office: CAV 207A
 Phone: 486-6628
 E-mail: Gregory.Smith@angelo.edu
 Office Hours: MTWR 9-10

- **Dr. Ralph Zehnder**
 Office: CAV 204B
 Phone: 486-6662
 E-mail: Ralph.Zehnder@angelo.edu
 Office Hours: W 2:30-5, F 11-1:30, or by appointment; Review sessions W 5 pm

CHEM 1411 LECTURE CLASSES

Lecture Class Schedule

<table>
<thead>
<tr>
<th>Sec</th>
<th>Days</th>
<th>Time</th>
<th>Instructor</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>010</td>
<td>MWF</td>
<td>09:00 am-09:50 am</td>
<td>Dr. Beran</td>
<td>CAV 211</td>
</tr>
<tr>
<td>020</td>
<td>MWF</td>
<td>09:00 am-09:50 am</td>
<td>Dr. Zehnder</td>
<td>CAV 219</td>
</tr>
<tr>
<td>030</td>
<td>MWF</td>
<td>10:00 am-10:50 am</td>
<td>Dr. Beran</td>
<td>CAV 211</td>
</tr>
<tr>
<td>040</td>
<td>MWF</td>
<td>10:00 am-10:50 am</td>
<td>Dr. Smith</td>
<td>CAV 223</td>
</tr>
<tr>
<td>050</td>
<td>MWF</td>
<td>10:00 am-10:50 am</td>
<td>Dr. Zehnder</td>
<td>CAV 219</td>
</tr>
<tr>
<td>060</td>
<td>TR</td>
<td>08:00 am-09:15 am</td>
<td>Dr. Carter</td>
<td>CAV 200</td>
</tr>
<tr>
<td>070</td>
<td>TR</td>
<td>09:30 am-10:45 am</td>
<td>Mr. Boudreaux</td>
<td>CAV 211</td>
</tr>
</tbody>
</table>

Required Supplies

 Purchasing Options:
 1. Textbook (printed) + eBook + SmartWork
 2. eBook + SmartWork
 3. SmartWork only (only if you get a textbook from another source that does not include SmartWork.)

 Options 1 and 2 are available from the ASU Bookstore or directly from the publisher at the [Norton website]. Option 3 is only available from the publisher.

• **Lab Manual [Required]:** Zumdahl, Zumdahl, Osborne, *Angelo State University Chemistry 1411* (2017)

• **Carbon Copy Lab Notebook** (available from the ASU Bookstore or from the lab stockroom)

• **Approved Lab Goggles [Required]** (available from the ASU Bookstore or from the lab stockroom)

• **Calculator [Required]:** Scientific calculator capable of performing calculations with scientific notation and logarithms. *Bring your calculator to class and to lab every day. Only non-programmable calculators may be used on the exams.*

Course Description
In this class, you will study the fundamental laws and theories of chemistry, chemical nomenclature, chemical equilibrium, metals and non-metals and their compounds, nuclear chemistry and the quantum theory of structure. **Prerequisites:** Chemistry 1411 is to be completed before Chemistry 1412. Proficiency in algebra required. Only students eligible to take college-level mathematics courses may take Chemistry 1411.

Grading

<table>
<thead>
<tr>
<th>Category</th>
<th>Points Possible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams (3×100 pts)</td>
<td>300 pts</td>
</tr>
<tr>
<td>Final</td>
<td>150 pts</td>
</tr>
<tr>
<td>Quizzes, classroom participation</td>
<td>150 pts</td>
</tr>
<tr>
<td>SmartWork Homework</td>
<td>200 pts</td>
</tr>
<tr>
<td>Laboratory</td>
<td>200 pts</td>
</tr>
<tr>
<td>Total</td>
<td>1000 pts</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percent</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90-100%</td>
<td>900-1000 pts</td>
</tr>
<tr>
<td>B</td>
<td>80-89.9%</td>
<td>800-899 pts</td>
</tr>
<tr>
<td>C</td>
<td>70-79.9%</td>
<td>700-799 pts</td>
</tr>
<tr>
<td>D</td>
<td>60-69.9%</td>
<td>600-699 pts</td>
</tr>
<tr>
<td>F</td>
<td><60%</td>
<td>0-599 pts</td>
</tr>
</tbody>
</table>

Exams

The exams will be given outside of regular class time on the dates listed in the table below:
Most of the exams will be over material covered since the last exam. However, the course builds on material delivered earlier so the concepts, calculations and techniques from earlier exams may be required. Only non-programmable calculators may be used on the exams (i.e., no graphic calculators are allowed).

Make up exams will be at the discretion of your individual faculty. Usually, allowances will only be made in the case of an excused university absence. Communication with your instructor is critical.

Final Exam Schedule
The Final Exam will be a comprehensive multiple-choice standardized exam published by the American Chemical Society (ACS). Study guides for the ACS exam (“General Chemistry - Official Study Guide”) are available for sale in the lab stockroom and from the ACS web page. The schedule for the 1411 final exams is shown below. The complete final exam schedule is also available on the ASU web page.

<table>
<thead>
<tr>
<th>Sec</th>
<th>Days</th>
<th>Time</th>
<th>Instructor</th>
<th>Final Exam Date</th>
<th>Final Exam Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>010</td>
<td>MWF</td>
<td>09:00 am-09:50 am</td>
<td>Dr. Beran</td>
<td>Wednesday, Dec. 12</td>
<td>8:00 am-10:00 am</td>
</tr>
<tr>
<td>020</td>
<td>MWF</td>
<td>09:00 am-09:50 am</td>
<td>Dr. Zehnder</td>
<td>Wednesday, Dec. 12</td>
<td>8:00 am-10:00 am</td>
</tr>
<tr>
<td>030</td>
<td>MWF</td>
<td>10:00 am-10:50 am</td>
<td>Dr. Beran</td>
<td>Monday, Dec. 10</td>
<td>10:30 am-12:30 pm</td>
</tr>
<tr>
<td>040</td>
<td>MWF</td>
<td>10:00 am-10:50 am</td>
<td>Dr. Smith</td>
<td>Monday, Dec. 10</td>
<td>10:30 am-12:30 pm</td>
</tr>
<tr>
<td>050</td>
<td>MWF</td>
<td>10:00 am-10:50 am</td>
<td>Dr. Zehnder</td>
<td>Monday, Dec. 10</td>
<td>10:30 am-12:30 pm</td>
</tr>
<tr>
<td>060</td>
<td>TR</td>
<td>08:00 am-09:15 am</td>
<td>Dr. Carter</td>
<td>Tuesday, Dec. 11</td>
<td>8:00 am-10:00 am</td>
</tr>
<tr>
<td>070</td>
<td>TR</td>
<td>09:30 am-10:45 am</td>
<td>Mr. Boudreaux</td>
<td>Thursday, Dec. 13</td>
<td>8:00 am-10:00 am</td>
</tr>
</tbody>
</table>

SmartWork Computer Homework
SmartWork is an online homework program which accompanies the Gilbert textbook. These assignments will be averaged to give a 200-point grade. To register with SmartWork, follow the instructions in the “Smartwork Student Registration” handout.

Blackboard
Grades will be posted on Blackboard. Information, handouts, homework assignments, and other course documents will either be posted on your instructor’s faculty web page, or on Blackboard.

Attendance
You are expected to attend all class meetings. You are expected to arrive on time and to stay until the end of the lecture. In-classroom activities such as worksheets and quizzes cannot be made up. You will not be automatically dropped if you stop attending class.

If you have the flu, please stay home. Do not help spread the flu to everyone else. Keep your professor informed as to your status by email (preferred) or telephone (if necessary). Your faculty will work with you to keep up to date in the class.

Last Day to Drop
The last day to drop the course with a grade of “W” is Thursday, November 1, 2018.
Honor Code / Academic Dishonesty
Angelo State University expects its students to maintain complete honesty and integrity in their academic pursuits. Students are responsible for understanding the Academic Honor Code, which is to be found in the Student Handbook. The penalty for ANY sort of dishonesty, cheating or plagiarism can range from a grade of zero on the assignment to a F in the course and disciplinary action as warranted in accordance with university guidelines. Don’t even consider it.

Disabilities
Persons with disabilities which may warrant academic accommodations must contact the Student Life Office, Room 112 University Center, in order to request and to implement academic accommodations.

CHEM 1411 LAB CLASSES

The lab classes that accompany the CHEM 1411 lecture course are shown in the table below. The labs will generally meet for pre-lab lectures in the Class Room listed in the table.

<table>
<thead>
<tr>
<th>Section</th>
<th>Day</th>
<th>Meeting Time</th>
<th>Instructor</th>
<th>Class Room</th>
<th>Lab Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>08Z</td>
<td>M</td>
<td>11:00 am-01:50 pm</td>
<td>Dr. Zehnder</td>
<td>CAV 215</td>
<td>CAV 216</td>
</tr>
<tr>
<td>09Z</td>
<td>M</td>
<td>02:00 pm-04:50 pm</td>
<td>Dr. Osborne</td>
<td>CAV 215</td>
<td>CAV 216</td>
</tr>
<tr>
<td>10Z</td>
<td>M</td>
<td>02:00 pm-04:50 pm</td>
<td>Dr. Smith</td>
<td>CAV 211</td>
<td>CAV 212</td>
</tr>
<tr>
<td>11Z</td>
<td>T</td>
<td>11:00 am-01:50 pm</td>
<td>Dr. Carter</td>
<td>CAV 211</td>
<td>CAV 212</td>
</tr>
<tr>
<td>12Z</td>
<td>T</td>
<td>11:00 am-01:50 pm</td>
<td>Dr. Osborne</td>
<td>CAV 215</td>
<td>CAV 216</td>
</tr>
<tr>
<td>13Z</td>
<td>T</td>
<td>02:00 pm-04:50 pm</td>
<td>Dr. Osborne</td>
<td>CAV 215</td>
<td>CAV 216</td>
</tr>
<tr>
<td>14Z</td>
<td>W</td>
<td>11:00 am-01:50 pm</td>
<td>Dr. Zehnder</td>
<td>CAV 215</td>
<td>CAV 216</td>
</tr>
<tr>
<td>15Z</td>
<td>W</td>
<td>02:00 pm-04:50 pm</td>
<td>Dr. Smith</td>
<td>CAV 211</td>
<td>CAV 212</td>
</tr>
<tr>
<td>16Z</td>
<td>W</td>
<td>02:00 pm-04:50 pm</td>
<td>Dr. Carter</td>
<td>CAV 215</td>
<td>CAV 216</td>
</tr>
<tr>
<td>17Z</td>
<td>R</td>
<td>11:00 am-01:50 pm</td>
<td>Dr. Zehnder</td>
<td>CAV 211</td>
<td>CAV 212</td>
</tr>
<tr>
<td>18Z</td>
<td>R</td>
<td>02:00 pm-04:50 pm</td>
<td>Mr. Boudreaux</td>
<td>CAV 215</td>
<td>CAV 212</td>
</tr>
</tbody>
</table>

Lab Course
The CHEM 1411 General Chemistry laboratory class accompanies this lecture class. The lab is designed to illustrate some of the principles involved in performing scientific measurements, handling chemicals, and performing chemistry experiments. In some cases, the experiments in the lab will introduce you to concepts before you cover them in the lecture course, and in some cases, the experiments will reinforce concepts already covered in the lecture course.

Labs will begin meeting on the first day of class. Bring your calculator!

Laboratory Attire
Beginning on the first day of lab, everyone MUST have approved goggles, long-sleeved shirts which cover the midriff, long pants, and shoes with closed toes and heels (no sandals, slides, etc.). (Basically, you should have as little exposed skin as possible.) Anyone not wearing the appropriate attire will not be allowed into lab.

Lab Manual and Lab Reports
The lab manual provides a description of the background for each experiment, pre-laboratory questions that will be turned in at the beginning of the lab period, a procedure for the experiment,
and a lab report form which must be handed in when the lab is completed. It is essential that you read the appropriate section in the lab manual before coming to class.

You will also need to record data in a lab notebook, and hand in the carbon copies from that notebook when the lab is complete. The lab notebook should include an abstract for the experiment, a short summary of the procedure for the lab, all of the data collected during the lab and any observations that are made, and a conclusion for the lab.

The grade for each lab will come from the lab report, the pre-lab questions, and the carbon copy pages from the lab notebook. Each lab will be worth 100 points.

Cleaning Up After Lab
Make sure that your lab area is clean and that all glassware and hardware has been cleaned and returned to the appropriate drawers before leaving the lab.

Make-Up Lab Policy
The lowest lab score will be dropped from the total. If you miss a lab for a valid reason, that is the score that will be dropped.

Lab Safety Training
All students enrolled in lab courses are required to take a Mandatory Laboratory Safety Training and Quiz on Blackboard. Instructions for completing the quiz are given below:

1. Login to Blackboard, and choose the course: entitled “Lab Safety Training.”
2. Under the left hand menu, choose: “Get Started Here”.
3. There are three sections:
 a. Welcome to Lab Safety Training — There are your instructions.
 b. Lab safety training — Click on “Lab Safety — Click here to begin”. This will download a PowerPoint slide show which will cover the safety training.
 c. The lab safety quiz. You must score 90% or higher. You can take it again in 24 hours.

The Lab Safety Training must be completed by the evening of Sunday, September 9.

Lab Quizzes and Final
There will be a 100-point lab midterm exam, given during the week of October 29, and a 100-point lab final given during the last week of classes. These grades will not be dropped from the total.

LECTURE AND LAB SCHEDULE — FALL, 2018

<table>
<thead>
<tr>
<th>Day</th>
<th>Lecture</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8/27
Chapter 1: Matter and Energy — Composition of Matter, States of Matter, Measurements, SI Units, Significant Figures, Unit Conversions</td>
<td>Significant Figures and Dimensional Analysis
Measuring Mass and Volume(procedure available on Blackboard)
Mandatory Lab Safety Training and Quiz — instructions given in Lab Safety Training section (must be completed by Sep. 10)</td>
</tr>
<tr>
<td>Day</td>
<td>Lecture</td>
<td>Lab</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-----</td>
</tr>
</tbody>
</table>
| 2 | 9/03 | Labs Do Not Meet
Monday, Sep 3 Labor Day
Chapter 2: Atoms, Ions, and Molecules — Nuclear Model, Atomic Mass, Periodic Table, Molecular and Ionic Compounds, Naming Compounds and Writing Formulas
Take Home Assignment: “Scientific Measurement and Presentation of Data” must be completed before start of lab next week. |
| 3 | 9/10 | Experiment 3: The Use of Volumetric Glassware |
| 4 | 9/17 | Experiment 4: Density Determinations
Chapter 3: Stoichiometry — The Mole Concept, Balancing Equations, Stoichiometry, Percent Composition, Limiting Reactants |
| 5 | 9/24 | Experiment 11: Percentage Water in a Hydrate
Chapter 3, cont.
Exam 1 – Thurs., Sep. 27 (Ch. 1, 2, 3) |
| 6 | 10/01 | Percentage of Potassium Chlorate in a Mixture (procedure available on Blackboard)
Chapter 4: Solution Chemistry — Concentration, Electrolytes, Acid-Base Reactions, Precipitation Reactions, Redox Reactions |
| 7 | 10/08 | Experiment 12: Titration of Vinegar
Chapter 4, cont. |
| 8 | 10/15 | Experiment 5: Specific Heat Capacity
| 9 | 10/22 | Experiment 7: Heats of Reaction: Hess’s Law
Chapter 6: Properties of Gases — Pressure, The Gas Laws, the Ideal Gas Law, Gas Density, Dalton’s Law, Kinetic-Molecular Theory
Exam 2 – Thurs., Oct. 25 (Ch. 3, 4,5) |
| 10 | 10/29 | Lab Midterm Exam
Chapter 6, cont.
Thurs., Nov. 1 Last Day to Drop
Experiment 10: Preparation and Properties of Hydrogen and Oxygen Gases (Demo) |
| 11 | 11/05 | Gas Law Labs (procedure available on Blackboard)
Chapter 7: A Quantum Model of the Atom — Electromagnetic Radiation, Atomic Spectra, Photoelectric Effect, Bohr Model, Quantum Numbers, Atomic Orbitals, Electron Configurations of Atoms and Ions, Periodic Properties |
<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>Lecture</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>11/12</td>
<td>Chapter 8: Chemical Bonds — Lewis Structures, Covalent Bond, Polar Bonds, Resonance, Exceptions to the Octet Rule</td>
<td>Experiment 2: The Emission Spectra of Atoms</td>
</tr>
</tbody>
</table>
| 13 | 11/19 | **Chapter 9: Molecular Geometry** — VSEPR, Valence Bond Theory, MO Theory
Wed., Nov. 21 Holiday
Thurs., Nov. 22 Thanksgiving
Fri., Nov. 23 Holiday | No Labs |
| 14 | 11/26 | Chapter 9, cont. **Exam 3 – Thurs., Nov. 29 (Ch. 7, 8, 9)** | Experiment 6: Molecular Structures and Shapes |
| 15 | 12/03 | **Chapter 10: Intermolecular Forces** — Intermolecular Forces, Vapor Pressure, Phase Diagrams, Water | **Lab Final** |
| 12/10 | Final Exams | | |
STUDENT LEARNING OUTCOMES

- **Learning Goal 1:** Students will be able to analyze complex chemical problems and draw logical conclusions.
 - Students will be able to use an understanding of atomic structure at the basic and atomic levels to analyze the structure and reactivity of substances and chemical species.
 - Students will be able to use an understanding of how energy interacts with matter to predict stable chemical species, and perform thermodynamic calculations describing chemical reactions.

- **Learning Goal 2a:** Students will be able to understand and apply scientific reasoning in the chemical sciences.
 - Students will be able to use an understanding of ions and molecules at the atomic level to predict the behavior of reactions in aqueous solutions.
 - Students will be able to use the basic ideas of quantum mechanics to describe how molecular bonds form and to predict molecular shape and polarity. Molecular structure and polarity will be used to predict the forces between molecules and relate those forces to the states of matter and phase changes.

- **Learning Goal 2b:** Students will be able to employ mathematics in the analysis of chemical problems.
 - The mole concept, chemical formulas and balanced chemical equations will be used to do chemical calculations that relate macroscopic measurements to numbers of atoms, ions or molecules.
 - Students will be able to do calculations involving solution concentration and know how to prepare solutions of given concentrations.
 - Students will be able to quantitatively predict gas properties using gas law calculations.

- **Learning Goal 3:** Students will be able to demonstrate technical and analytical skills in chemistry.
 - Students will be able to use the periodic table to determine basic atomic information and to predict trends in atomic properties.
 - Students will be able to interconvert between chemical names and formulas to the extent that they can work problems given only one of those pieces of information.
 - Students will be able to classify common types of chemical reactions and predict the outcomes of reactions.

Evaluation of Student Learning Outcomes
Student learning outcomes will be evaluated by test questions or by the grading of in-classroom activities, as described by your instructor.

Texas Higher Education Coordinating Board Natural Sciences Objectives
The objective of the study of a natural sciences component of a core curriculum is to enable the student to understand, construct, and evaluate relationships in the natural sciences, and to enable the student to understand the basis for building and testing theories.

Exemplary Educational Objectives
1. To understand and apply method and appropriate technology to the study of natural sciences.
2. To recognize scientific and quantitative methods and the differences between these approaches and other methods of inquiry and to communicate findings, analyses, and interpretation both orally and in writing.
3. To identify and recognize the differences among competing scientific theories.
4. To demonstrate knowledge of the major issues and problems facing modern science, including issues that touch upon ethics, values, and public policies.

5. To demonstrate knowledge of the interdependence of science and technology and their influence on, and contribution to, modern culture.

1 http://books.wwnorton.com/books/index.aspx
2 http://uwm.edu/acs-exams/students/student-study-materials/
3 http://www.angelo.edu/services/registrar_office/final.html
4 www.wwnorton.com/smartwork
5 http://blackboard.angelo.edu (or access Blackboard from RamPort)
6 www.angelo.edu/cstudent/