1. **Course Information**

   Course Name: CHEM 3451 Organic Chemistry I  
   Course Type: 4.000 Credit Hours Lecture and Lab  
   Pre-Requisite: “C or better” grade in CHEM1412 General Chemistry  
   Website: [https://blackboard.angelo.edu](https://blackboard.angelo.edu)

2. **Instructor Information**

   Instructor: Mr. Kevin A. Boudreaux  
   Office: CAV 207B  
   Email: Kevin.Boudreaux@angelo.edu  
   Phone: 325-486-6623  
   Office Hours: M-F 9:00 am – 10:00 am or by appointment  
   Student Tutor: Clancy Collum (M 1-7, TWR 4:30-8)

3. **Lecture Sections and Meetings**

<table>
<thead>
<tr>
<th>Sections</th>
<th>Days</th>
<th>Time</th>
<th>Instructor</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>010</td>
<td>MTWRF</td>
<td>10:00 am – 11:45 am</td>
<td>Mr. Boudreaux</td>
<td>CAV 223</td>
</tr>
</tbody>
</table>

4. **Lab Sections and Meetings** (See [Laboratory Syllabus](#) on page#8)

<table>
<thead>
<tr>
<th>Sections</th>
<th>Day</th>
<th>Time</th>
<th>Instructor</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>01Z</td>
<td>TWR</td>
<td>2:00 pm – 4:50 pm</td>
<td>Mr. Boudreaux</td>
<td>CAV 223/233</td>
</tr>
</tbody>
</table>

5. **Course Materials for the Lecture and Lab**

<table>
<thead>
<tr>
<th>Material</th>
<th>Description and Source</th>
</tr>
</thead>
</table>
   | · Model Kit (Required)  | Molecular Visions Model Kit  
   |                         | ISBN-10: 0964883716  
   | · Free Lab Manual       | A pdf manual will be posted on Blackboard  
   | · Lab Notebook          | Lab notebook that makes duplicate copies (available from lab stockroom)  
   | · Other Supplies (Required) | Approved lab goggles (from bookstore, or from chemistry lab), and nitrile gloves |

6. **Course Description**

   The **CHEM 3451 Organic Chemistry-I** is the first of two organic chemistry course sequence (3451 and 3452). In this first course we will discuss both the physical properties of organic compounds as well as the chemical reactions they undergo. The course covers the concepts of structure, bonding, molecular orbitals, hybridizations, resonance, acid-base, alkane, alkene, alkyne, alcohols, ethers, substitution reaction, addition reaction, elimination reactions, reagents, mechanisms, and nomenclature with an
emphasis on biological applications. The overall objective is for the student to master the structural relationships to reactivity and shape, and the reactions of the principal classes of organic compounds.

7. **Course Goals**

The goals will be to increase your skills in nomenclature, understanding structural properties, functional group transformation, and single-step synthesis. Having a mastery of this course material will provide students with a foundation for understanding and applying the concepts of organic chemistry. It increases the students’ knowledge of the involvement of organic chemistry in everyday life, prepare the students for biochemistry and upper-level organic courses, and involve the students in critical thinking exercises through course assignments. Specifically, a strong knowledge of organic chemistry will serve to aid succeeding in standardized examinations for professional programs.

8. **Evaluation**

Your grade in this course will be determined by the assignments, quizzes, midterm exams, lab reports, and the final exam. The final letter grade for the course will be as follows:

- A = 90 - 100%
- B = 80 - 89.9%
- C = 70 - 79.9%
- D = 60 - 69.9%
- F = <60%

**Point distribution:**

<table>
<thead>
<tr>
<th>Component</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online Assignments / Homework</td>
<td>200 pts</td>
</tr>
<tr>
<td>Quizzes</td>
<td>100 pts</td>
</tr>
<tr>
<td>Classroom Participation</td>
<td>50 pts</td>
</tr>
<tr>
<td>Exams</td>
<td>3 x 100 pts</td>
</tr>
<tr>
<td>Final Exam</td>
<td>1 x 150 pts</td>
</tr>
<tr>
<td>Laboratory</td>
<td>200 pts</td>
</tr>
<tr>
<td><strong>Total points</strong></td>
<td>1000</td>
</tr>
</tbody>
</table>

The online assignments posted on the course website (Blackboard or WileyPLUS) can significantly contribute to your learning process. The prompt feedback of the system can have a positive impact on your learning and retention. Each online assignment may have a different format and a different number of attempts. It is recommended that students work through the practice problems in the text before attempting online assignments. It is highly recommended that you review the section of the text related to a question in the online assignment after you miss the first attempt on that question. Each student should work individually on the online assignments and give an earnest effort.

There will be quizzes every day at the beginning of class. The quizzes will consist of free responses (short answers / mechanisms) or multiple choice questions, and will be about 10 minutes long. [Some of the quizzes may be take-home quizzes rather than in-class quizzes.] These questions will be closely related to the practice problems on the textbook, and the laboratory problems. It’s the student’s responsibility to write the answers legibly.

There will be a total of 3 exams (~60 min, 100 points each). The exams will consist of a mixture of free-response questions (short answers/mechanisms) and multiple choice questions, but the instructor reserves the right to make changes in the format. The exams will be given during the scheduled lab times. The instructor also reserves the right to make different versions of an exam with different questions that cover the same course material and concepts. It is very important that each student shows up on time during exam days. Every effort will be made by the instructor to distribute the exam materials in a timely fashion.
The Final Exam will be a comprehensive one (2 hours, 150 points). It is mandatory to take the final exam to pass this course. The final exam will consist of a mixture of free-response questions (short answers/mechanisms) and multiple choice questions, but the instructor reserves the right to make changes in the format. The instructor also reserves the right to make different versions of an exam with different questions that cover the same course material and concepts. You must bring your Campus ID card, and it is very important to write your name on your exam and to bubble in your name and ID number on the answer sheet.

Make-up policy: No make-up for missed classroom participation will be offered. A grade of zero will be assigned to the missed class participation points. A make-up exam or paper-based quiz may be offered, if a student misses an exam or quiz for a university-excused absence (such as religious holiday, death in family, documented illness, jury duty, or for representing the university in sporting events) with a proper documentation of the absence. The student must communicate with the instructor before the starting of the regular exam or quiz in order to request a make-up.

Grade adjustment policy: There is no curve in this course. The instructor reserves the right to make linear adjustments to exam grades in cases if an exam question was found to be in error or unreasonably difficult. Adjustments will not be made to increase the average of the class or to hike the letter grade.

9. Learning Outcomes:
At the successful completion of the course, a student will be able to:

1. Illustrate the structure, bonding and stability of a molecule
2. Identify spatial arrangement (isomer, conformation) and evaluate their energy differences
3. Identify and assess strength of good leaving groups, good nucleophiles, electrophilic centers, bases, and acidic protons
4. Provide the major products of a chemical reaction with correct regio- and stereochemistry
5. Provide the reagents necessary to accomplish a given one-step transformation
6. Provide the mechanism of a given transformation and relate to a reaction coordinate energy diagram, comparing competing pathway utilizing thermodynamic and kinetic principles
7. Propose a plausible multi-step synthesis for a given transformation

Specific learning outcomes for each chapter will be listed at the beginning of each chapter.

10. What is expected of you to enjoy success in this course?
Like in any science course you can do much better in organic chemistry when you understand the reason behind the concepts. Participating in lecture, taking notes, reading the materials, and watching the videos are essential, but not enough to enjoy the success in this course. You must involve in active learning like practicing problems, drawing out structures, making 3D models, raising question while reading, addressing your questions with detailed answers, making connections to the key concepts, frequently reviewing the fundamentals, taking the time to reflect your learning, and making a framework of concepts in your mind. Especially, you should always be familiar with the factors that contribute to the stability or instability of electrons in a given environment. Chemical reactions can generally be seen as a flow of electrons to get stable structures. So it’s often required to draw out the non-bonded electron pairs, and you should keep a count of electrons. Clarity in your drawing leads to clarity in your thinking.

Key concepts and connection will be covered in the lecture, but you should read the textbook and practice the assigned problems before the next class meeting. Failure to stay current on reading and
practicing assignments will greatly affect your ability to keep up during lecture and, therefore, will affect your grade in this course.

11. Course and University Policies

Office Hours / Email Communication: Students can walk-in to the regular office hours. If you can’t make it during those hours, please make an appointment by email. Students are expected to frequently check their Angelo State email account and the Blackboard course website announcements for important communication from the instructor. Use CHEM3451 in the subject line of your emails to enable proper filtering. The instructor will only answer e-mails that are sent from an ASU e-mail account. Any submitted e-mails to the instructor are expected to be written in a professional format and include your first and last name and course number and section/meeting time. The instructor will not respond to any messages that do not comply with such requirements. The instructor will respond to legitimate e-mails within 24-48 hours during the week and may not respond until after weekends or holidays if messages are received on any of such days. More general questions will be addressed in the following lecture.

Blackboard: Grades, information, handouts, homework assignments, and other course documents will be posted on Blackboard. [http://blackboard.angelo.edu](http://blackboard.angelo.edu) (or access Blackboard from RamPort).

Changes: The instructor reserves the right to change by addition and/or subtraction any and/or all materials contained in this syllabus. This includes, but is not limited to, course content, assignments, due dates, and portion(s) of the grade assigned to individual items within the course.

Copyright: All handouts, videos, quizzes, exams and lecture material are ©2019 by K. Free (no cost) copying and distribution of these materials among Angelo State University students are allowed. Any other distribution, including distribution for a fee or sharing online are not allowed without my written consent. WileyPLUS materials are copyrighted by the publisher Wiley.

Policy on Academic Misconduct: All students are expected to conform to college-level standards of ethics, academic integrity, and academic honesty. By enrolling in this course, you agree to be bound by the ASU Academic Honor Code which is to be found in the Student Handbook ([www.angelo.edu/cstudent/](http://www.angelo.edu/cstudent/)). The penalty for ANY sort of dishonesty, cheating or plagiarism can range from a grade of zero on the assignment to an F in the course and disciplinary action as warranted in accordance with university guidelines.

Special Accommodations: Persons with disabilities which may warrant academic accommodations must contact the Disability Services, Room 112 University Center, ada@angelo.edu, 325-942-2047 in order to request and to implement academic accommodations.

Behavior: All students are expected to follow proper classroom behavior and treat other students and the instructor with respect. If the instructor deems a student’s actions or behavior disruptive to the class, the students will be asked to leave the class for that day.

Refer ASU academic calendar for important dates related to enrollment.

To know more about the final exam schedule refer to [ASU Final exam schedule](http://www.angelo.edu/cstudent/).

This syllabus is subject to change at any point throughout the term. Reasonable notice will be given for any changes made. Latest update: 5/31/2019
## 12. Tentative Lecture and Exam Schedule

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wed</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>June 3</strong></td>
<td><strong>June 4</strong></td>
<td><strong>June 5</strong></td>
<td><strong>June 6</strong></td>
<td><strong>June 7</strong></td>
</tr>
<tr>
<td>Chapter 1: A Review Of</td>
<td>Chapter 1: A Review Of General</td>
<td>Chapter 2: Molecular Representations</td>
<td>Chapter 2: Molecular Representations</td>
<td>Chapter 3: Acids and Bases</td>
</tr>
<tr>
<td>General Chemistry</td>
<td>General Chemistry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 2: Molecular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Representations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>June 10</strong></td>
<td><strong>June 11</strong></td>
<td><strong>June 12</strong></td>
<td><strong>June 13</strong></td>
<td><strong>June 14</strong></td>
</tr>
<tr>
<td>Chapter 4: Alkanes and</td>
<td>Chapter 4: Alkanes and Cycloalkanes</td>
<td>Chapter 5: Stereoisomerism</td>
<td>Chapter 5: Stereoisomerism</td>
<td>Chapter 6: Chemical Reactivity and Mechanisms</td>
</tr>
<tr>
<td>Cycloalkanes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exam-1 during lab time at</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2:00 pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>June 17</strong></td>
<td><strong>June 18</strong></td>
<td><strong>June 19</strong></td>
<td><strong>June 20</strong></td>
<td><strong>June 21</strong></td>
</tr>
<tr>
<td>Chapter 7: Nucleophilic</td>
<td>Chapter 7: Nucleophilic</td>
<td>Chapter 7: Nucleophilic</td>
<td>Chapter 8: Addition Reactions</td>
<td>Chapter 8: Addition Reactions</td>
</tr>
<tr>
<td>Substitution and Elimination</td>
<td>Substitution and Elimination</td>
<td>Substitution and Elimination</td>
<td>of Alkenes</td>
<td>of Alkenes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>June 24</strong></td>
<td><strong>June 25</strong></td>
<td></td>
<td><strong>June 26</strong></td>
<td><strong>June 27</strong></td>
</tr>
<tr>
<td>Chapter 9: Alkynes</td>
<td></td>
<td></td>
<td>Chapter 12: Alcohols and Phenols</td>
<td>Chapter 12: Alcohols and Phenols</td>
</tr>
<tr>
<td>Chapter 10: Radical Reactions</td>
<td></td>
<td></td>
<td></td>
<td>Exam 3 during lab time at</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2:00 pm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>July 1</strong></td>
<td><strong>July 2</strong></td>
<td><strong>July 3</strong></td>
<td><strong>27-Sep</strong></td>
<td><strong>28-Sep</strong></td>
</tr>
<tr>
<td>Chapter 13: Ethers, Epoxides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and Thiols</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

**Final Exam: 10:15 am - 12:15 pm CAV200**
13. **Lab Instructor Information**

   Instructor: Mr. Kevin A. Boudreaux  
   Office: CAV 207B  
   Email: Kevin.Boudreaux@angelo.edu  
   Phone: 325-486-6623  
   Office Hours: M-F 9:00 am – 10:00 am or by appointment

14. **Lab Sections and Meetings**

<table>
<thead>
<tr>
<th>Sections</th>
<th>Day</th>
<th>Time</th>
<th>Instructor</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>01Z</td>
<td>TWR</td>
<td>2:00 pm – 4:50 pm</td>
<td>Mr. Boudreaux</td>
<td>CAV 211/233</td>
</tr>
</tbody>
</table>

15. **Required Supplies to Purchase for lab**

   - **Approved Lab Goggles:** Available from the ASU Bookstore or from the lab stockroom
   - **Lab Notebook:** Lab notebook that makes duplicate copies (available from lab stockroom)
   - **Other supplies:** Nitrile gloves, a black sharpie marker, laboratory coat is optional

16. **Lab Portion Description**

   This laboratory portion is designed to accompany **CHEM 3451 Organic Chemistry-1** course. Selected experiments are designed to illustrate the fundamental techniques used in organic chemistry, to develop familiarity with the properties of organic compounds, and to introduce analytical techniques including chromatography and spectroscopy.

   By the end of this course, the student should be able to

   - Carry out chemical reactions, work up, separate, purify and analyze the products. Manipulate synthetic apparatuses and glassware.
   - Carry out mathematical procedures necessary in organic synthesis and analysis.
   - Interpret analytical data (melting point, boiling point, thin layer chromatography, column chromatography, gas chromatography, infrared spectroscopy, NMR spectroscopy, mass spectrometry) to verify the product/composition of a reaction.
   - Explain the procedures and concepts of basic organic laboratory, synthetic and analytical techniques.
   - Communicate the outcome of an experiment to scientific audience.
17. Experiments and Grades

There will be 10 experiments or worksheets this semester. Each lab experiment is worth 20 points. You must participate in the lab work and submit a complete lab report to get the lab points. Grading rubrics and benchmarks will be discussed during the lab introduction. The 10 labs x 20 pts = 200 pts from the laboratory portion will be added to your calculate your 3451 final score.

3451 course = 800 points from lecture + 200 points from laboratory.

<table>
<thead>
<tr>
<th>Week of</th>
<th>Experiment</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 4</td>
<td>Introduction and Melting Point</td>
<td>Lab Report = 20 pts</td>
</tr>
<tr>
<td>June 5</td>
<td>TLC and Model Kit Lab</td>
<td>Lab Report = 20 pts</td>
</tr>
<tr>
<td>June 6</td>
<td>Fractional Distillation</td>
<td>Lab Report = 20 pts</td>
</tr>
<tr>
<td>June 11</td>
<td>Exam 1</td>
<td></td>
</tr>
<tr>
<td>June 12</td>
<td>Recrystallization of Biphenyl and Acetanilide</td>
<td>Lab Report = 20 pts</td>
</tr>
<tr>
<td>June 13</td>
<td>Isolation of Trimonyristin</td>
<td>Lab Report = 20 pts</td>
</tr>
<tr>
<td>June 18</td>
<td>Separation of Benzoic Acid and Naphthalene</td>
<td>Lab Report = 20 pts</td>
</tr>
<tr>
<td>June 19</td>
<td>Exam 2</td>
<td></td>
</tr>
<tr>
<td>June 20</td>
<td>Dehydration of Cyclohexanol</td>
<td>Lab Report = 20 pts</td>
</tr>
<tr>
<td>June 25</td>
<td>IR Spectroscopy and Mass Spectrometry</td>
<td>Lab Report = 20 pts</td>
</tr>
<tr>
<td>June 26</td>
<td>NMR Spectroscopy – Part 1</td>
<td>Lab Report = 20 pts</td>
</tr>
<tr>
<td>June 27</td>
<td>Exam 3</td>
<td></td>
</tr>
<tr>
<td>July 2</td>
<td>Limonene Extraction Using Supercritical CO₂</td>
<td>Problem Set = 20 pts</td>
</tr>
<tr>
<td></td>
<td>Total points</td>
<td>200 pts</td>
</tr>
</tbody>
</table>

Most of the experiments for this course are described in the lab manual, which will be posted on Blackboard. You are expected to read over each procedure before performing the experiment in lab. You will have to write the procedure in you lab notebook.

There will be no separate exams for the laboratory portion of 3451.

18. Lab Notebook and Preparation for Lab

Lab reports should be written in your lab notebook. They will be due either at the end of the lab period, or before the next day’s lecture class. A complete lab report includes prelab, observations and post-lab sections.

**Prelab:** The prelab for each experiment may take a couple of hours to prepare properly and it is important that you understand the intent and purpose of the experiment before attending the lab. You should use the template available on the Blackboard to write your prelab. Your procedure should be detailed enough to allow anyone to follow the instructions and complete the experiment. The following sections should be included in the prelab:

- Date and experiment title
- Your name
- Purpose (aim) of the experiment
- Chemical equations and structures (reactions, if applicable, and molecular drawings of all compounds and solvents used in that experiment)
• Physical data table (include the names of all compounds and solvents used in that experiment, their chemical formulas, molar masses, melting point, boiling point, density, and any hazard information relating to that substance)
• Theoretical yield calculation (if applicable)
• Procedure

Observations: Thorough observations should be recorded (handwritten) on your notebook during the lab. Your instructor will sign you out only if you have a complete observation record.

Post-lab: You will have to write the post-lab and submit it by the deadline posted for each lab. The following sections should be included in the post-lab.

• Results
• Conclusion
• Answers to the lab questions
• References
• Graphs, spectra (IR and NMR), and chromatography data (GC and TLC)

19. Attendance & Participation

Mandatory attendance is required to get a grade for the experiment. Preparation, efficient and appropriate use of time, attention to detail, staying on task, and a willingness to learn and participate are valuable qualities that will lead to a successful lab experience.

No make-up labs are given for CHEM 3451. Any lab which is missed for valid reasons will have its score substituted for the average on all the other labs for the term. In order to be eligible for this, the instructor must know beforehand that you will be absent.

Students will work in groups of two unless otherwise instructed. Both students should participate equally in the lab. Students will turn in individual lab reports that are reasonably different from their partner’s work.

20. Policy on Academic Misconduct

All students are expected to conform to college-level standards of ethics, academic integrity, and academic honesty. By enrolling in this course, you agree to be bound by the ASU Academic Honor Code which is to be found in the Student Handbook (www.angelo.edu/cstudent/). The penalty for ANY sort of dishonesty, cheating or plagiarism can range from a grade of zero on the assignment to an F in the course and disciplinary action as warranted in accordance with university guidelines.
Standard Operational Procedures and Safety Rules
In the Organic Chemistry Laboratory

The following rules are to be observed in this lab at all times. There is a signature sheet at the end of this syllabus that you are required to sign and turn in. Any student working in an unsafe manner may be dismissed from the laboratory by the instructor.

21. Laboratory Attire

Beginning on the first day of lab, everyone MUST have approved goggles, long pants, long sleeve shirt, and closed-toed shoes (no sandals, ballet slippers, etc). Tank tops, A-shirts, and anything that bears the midriff are also not allowed. Your clothing should not have excessive holes in it due to wear and tear or design (no excessively ripped jeans and the like). Anyone not wearing the appropriate attire will not be allowed into lab. Remember, the more skin you show the more places that chemicals can get on your skin and cause damage. Lab is also not a place that you want to wear nice clothing. We will be working with chemicals that can burn holes in, discolor, or damage clothing. Also anyone with shoulder length hair should tie it back during lab. It is also recommended to have a spare pair of pants and a shirt in your backpack when you come to lab in case of a spill or accident in lab.

22. Safety in the Lab Environment

The student is responsible for reading the safety regulations given on pages 1 and 2 of the lab manual, and in this syllabus. All students must alert the lab instructor immediately in the event of any cuts, chemical spills, broken equipment, fires, etc.

Behavior: Do not eat, drink, smoke, or chew gum in the lab. Work only at your assigned desk. Do not perform experiments other than those which are scheduled for that day. No horseplay will be tolerated.

Fires: Most organic materials — including you, your hair, and your clothing — are flammable. Know the location of the safety showers, fire extinguishers, and fire blankets. The student is responsible for knowing the location of the safety equipment in the lab in which he or she is working. This includes the location of the safety shower, eye wash station, fire extinguishers and fire blankets.

Injuries: Blood is always a sure sign of bad laboratory technique. Check all glassware for cracks, sharp edges, or star cracks before using it. Any injury no matter how trivial should be reported to the lab instructor.

Floods: Be careful with drain hoses and leaky faucets.

Spills: Notify the lab instructor of any spills which occur during the lab. Minor spills can be cleaned by students, but do not try to clean up reagent or solvent spills yourself; some of these materials require special care in their disposal. Clean up any spills immediately.

Eye Safety: The wearing of contact lenses is not forbidden; however, note that it is not safe as volatile chemicals can react with the material that is used to make soft contact lenses and can be trapped behind hard contact lenses. This can result in the lenses being fused to your eye or the chemicals being trapped behind the lens and staying in contact longer with your eye.

If you are pregnant (or become pregnant) contact the instructor immediately to make special accommodations.
23. Chemical Wastes

Most of the procedures contain a description of how to handle the wastes generated in these labs. Appropriately labeled waste bottles will be provided for most organic wastes. Concentrated acids should be neutralized with sodium bicarbonate, or some other appropriate weak base, before being disposed of in the sink; concentrated bases should be neutralized with glacial acetic acid (unless we need to unclog a drain somewhere!). Do not throw away broken glass or capillary tubes in the trash; dispose of them in the glass waste containers.

Throw away trash in the appropriate containers. Follow the directions of your instructor for discarding wastes from that day’s work. These instructions must be followed carefully; disposing of chemical wastes in the wrong way may result in dangerous reactions (or at least a foul-smelling lab — or a foul-smelling chemist). Always ask if you’re unsure. Broken glass should be discarded in the designated waste containers. NEVER throw glass away in the trash cans!

24. Chemical Stock

Do not move reagent bottles from their assigned place. Always recap reagent bottles. Some reagents decompose when exposed to the atmosphere for a period of time or they will evaporate and you may then begin breathing it in. Do not stick anything into the reagent bottles. If a spatula is provided for that purpose, be sure that the same spatula is used in the same bottle. If you pour out or weigh out too much of any reagent or solvent from the bottle, do NOT put the excess back in the bottle. This will risk introducing contaminants into the main supply of the reagent. Unused or excess reagents should be disposed of in the appropriate waste container. When an experiment calls for water, use deionized water provided in the wash bottles on the lab benches unless the directions specifically call for tap water. USE ONLY TAP WATER IN HOT WATER BATHS! Never add water to acid! Never add boiling chips or activated carbon to hot liquids!

25. Cleaning Up

Before a student can leave the lab at the end of the experiment, he or she must make sure that the bench area is clean, all electrical equipment has been unplugged, all faucets turned off, and no solids have been left in the sinks. Once these tasks have been accomplished a student must then have their lab instructor check their bench and initial one of the pages in their lab book for the current experiment. The common areas of the lab must be kept clean. This means that the hoods and balances should be free from solid or liquid waste and the solvent and reagent bottles should be capped. If the lab is not clean when the lab section is over there will be one “grace” lab. This means your lab section can leave the lab messy once. If the lab is left messy following a lab section more than once the entire section will have 10% removed from their grades for that particular lab report. If this happens more than once a 10% penalty will be applied each and every time and harsher measures may also be applied if the messiness continues. If it can be determined who left the lab messy only those people will have their lab report grades impacted. If not then the entire section will be penalized. No points will be deducted for broken glassware as long as it is cleaned up and reported to your instructor.

26. Microkit Return Policy

Plastic kits containing the microscale glassware will be checked out at the beginning of the lab period. These kits must be returned with ALL of the glassware clean and dry. As part of the checkout procedure outlined above you will return your microkits only after your instructor has checked your area and the microkits for cleanliness and initialed your notebook.
27. **Other Operational Procedure**

- Students should disassemble and return common equipment to the TA, drawer, or cabinet at the end of the lab period.
- Students should complete all lab work and clean up by at least ten minutes before the end of lab. Students should be out of the lab on time to allow for the next class to be prepared.
- It is a good idea that students wash their hands before leaving the lab. Even if gloves were used, residual chemicals may still be present on the skin.
- Students should wash glassware, clean the workspace area.
- Students should take care to not contaminate chemicals, standards, solutions, or solvents by using the same pipette or spatula in different containers without cleaning and drying the item thoroughly first.
- Students should not sit or lean on the counters as there may be chemical residue remaining which may damage the skin or clothing.
- Students should not leave the lab while wearing gloves or lab coats.
- Fume hoods are used when a procedure may produce smoke or strong odors. Keep the fume hoods clean! Do not leave weighing paper lying around in the hood after you’re finished with it.
- Keep the balances clean. Immediately clean up any chemicals which are spilled on the balances, or around the balance area. Do not leave stray pieces of paper or glassware around the balances.
- Equipment: Bunsen burners, ring stands, clamps and O-rings, and buret clamps are available on the side shelves. At the end of the laboratory period, clean the desk space and return burners, clamps, and ring stands to their assigned spaces.
- Glassware: Hot glass looks exactly like cold glass. Check all glassware for cracks, sharp edges, or star cracks before using it. (I know I said this already, but it bears repeating.)

28. **Dead Week Lab Clean-Up**

The lab will be held during dead week. However, no lab will be performed. Instead each lab section will help clean-up the lab. Attending this lab does not earn you any points. However, failure to attend this lab will result in 10 points being removed from your lab grade.

________________

This syllabus is subject to change at any point throughout the term. Reasonable notice will be given for any changes made. Latest update: 5/31/2019
29. Acknowledgement

I hereby acknowledge that I have read and fully understand the risks involved in chemical laboratories. I understand the precautions that I must take as written in the CHEM 3451 laboratory syllabus.

<table>
<thead>
<tr>
<th>Name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td></td>
</tr>
</tbody>
</table>

(Turn in this signature page on the first day of your laboratory)
30. **Textbook Buying Options**

Wiley is the publisher of our textbook, “Organic Chemistry 3rd Edition by David Klein”. This is one of the organic chemistry textbooks that has a full online version called WileyPLUS. It comes with an online E-text, assignments, guided practice problems, animations, and videos. **Purchasing WileyPLUS is required for our course.** You need to use an online browser (Chrome, Firefox, Safari, Edge, etc.) to access WileyPLUS. Once purchased, the access to WileyPLUS ends at the end of the semester. If you retake the course, or come back for organic chemistry-2, your access will be resumed free of cost, and ends at the ends of that semester.

**Purchasing an offline eBook is optional.** Once purchased, the eBook can be downloaded from WileyPLUS site to your computer. You can read it offline like a kindle book, but using a special app that has most of the marking and highlighting features. You can read it on any device (computer, tablet, or phone). You can keep this offline eBook forever.

**Purchasing a physical copy of textbook is optional.** You can buy it from the Bookstore, or online using the link given in blackboard. Loose-leaf physical copy is what they offer. But you can buy thin bound or hardcover from elsewhere.

**Option-1: Free Trial**

Go to Blackboard. Enter into Organic Chemistry course. Click “Textbook Buying” on the left side menu. Click the link “WileyPLUS HomePage”. First time users will see the options to buy textbook. Select “14 Days Free trial”. During the free trial you have change to decide on one of the following buying options.

**Option-2: WileyPLUS Instant access only (comes with online E-text).**

Go to Blackboard. Enter into Organic Chemistry course. Click “Textbook Buying” on the left side menu. Click the link “WileyPLUS HomePage”. First time users will see the options to buy textbook. Select “WileyPLUS Instant access only”. Our course ID is 664534. Pay online. May be cheaper than the bookstore.

Alternatively, you can buy this registration code from the ASU bookstore. I think it is $174, may be costlier than online direct purchase. Then go to Blackboard, follow the above steps to select “I have a registration code”, and enter the registration code you bought from bookstore. Then join our course using the course ID 664534.

**Option-3: WileyPLUS Instant Access (comes with online E-text), and an offline eBook**

Go to Blackboard. Enter into Organic Chemistry course. Click “Textbook Buying” on the left side menu. Click the link “WileyPLUS HomePage”. First time users will see the options to buy textbook. Select “WileyPLUS Instant access + eBook”. Our course ID is 664534. Pay online.

**Option-4: WileyPLUS Instant Access (comes with online E-text), and a loose-leaf physical copy**

You can buy this from ASU bookstore. I think it is $230, may be costlier than online direct purchase. Then go to Blackboard, follow the above steps to select “I have a registration code”, and enter the registration code you bought from the bookstore. Then join our course using the course ID 664534.