CENG 4363: Steel Design

1: Course Logistics
- Semester: Spring 2020
- Section: 010
- Class Days: Tuesday and Thursday
- Class Time: 8:00am – 9:15am
- Class Location: Vincent 238

2: Instructor Information
- Instructor: Anthony Battistini, PhD
- Email: anthony.battistini@angelo.edu
- Phone: (325) 486-5511
- Office: Vincent 271
- Office Hours: Posted on Dr. Battistini's ASU Faculty Website

3: Course Materials

3.1: Required Textbook

3.2: Recommended Textbooks

Steel Design Guides 1-35, AISC. Available for download through AISC Website with free student membership.

3.3: Software
The use of structural analysis software will be necessary to complete the course project. The following programs are recommended, but the use of any other suitable commercial software is permitted.

MASTAN2 v3.5, Ziemian, Ronald and William McGuire- available for free download at the MASTAN2 Website.

3.4: Other Supplemental Materials
Materials Posted on Blackboard® Learning Management System website

It is also recommended that you purchase a binder to organize your notes for the class. The class primarily uses handouts, which are posted to Blackboard and need to be printed and brought class.
4: Prerequisites

- CENG 3361 Structural Analysis I
- CENG majors only or departmental permission

5: Course Description

Catalog: Design and behavior of the elements of steel structures with AISC specifications, proportioning members and connections using load and resistance factor design.

Objective: This course will apply the concepts learned in Structural Analysis (CENG 3361) to structural steel design. The course will begin by introducing steel as a structural material, learning the different grades of steel available, and understanding the mechanical and behavioral properties of steel. Both LRFD and ASD design philosophies will be discussed, specifically within the context of the AISC Steel Construction Manual, 15th Edition - the prevailing building code for steel design in the United States. Specific design topics to be covered include: tension members, compression members, beams, beam-columns, bolted connections, and welded connections. At the end of the course, you should be proficient in using the Steel Construction Manual for steel frame design, and have the foundation to learn more advanced topics in steel design.

6: Student Learning Outcomes

When you complete this class you should be able to:

1. Describe load and resistance factor design (LRFD) and allowable stress design (ASD) and apply LRFD to design safe structures.
2. Design and analyze tension members considering yield and rupture failure modes.
3. Design and analyze simple bolted and welded connections.
4. Design and analyze steel compression members.
5. Design and analyze steel beams for flexure, shear, and deflection.
6. Design and analyze steel members subjected to combined flexure and axial loads.
7. Use LRFD to design low-rise steel building for specified loads in a team setting.

7: Course Outcome Mapping

The mapping of the Student Learning Outcomes for the course to the ABET Criterion 3 Student Outcomes is shown in Table 1.

Table 1: Student Learning Outcome Mapping to ABET Criterion 3

<table>
<thead>
<tr>
<th>Course Learning Outcome</th>
<th>1 Solve Problems</th>
<th>2 Design</th>
<th>3 Communication</th>
<th>4 Ethics & Professionalism</th>
<th>5 Teamwork</th>
<th>6 Experimentation</th>
<th>7 Acquire Knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
8: **Course Structure, Communication, Policies**

The course will meet twice a week for class, where the instructor will be communicating engineering theories and information to the students. You are expected to complete any assignments prior to class so that you are prepared to ask questions, to solve problems, and to learn new material during class.

Lesson materials will be organized on the [Blackboard](#) website for the course. You are expected to have access to the lesson handouts during class by either printing the handouts or having them available for modification on your computer/tablet. The handouts only outline the material for a given class and will need to be completed during class for the student to have the relevant information.

Attendance at lectures is required. Some of the material presented will correlate with the textbook, but other material will not and/or may be presented differently. You are responsible for all topics that are covered in class.

Important course announcements and changes will be sent by email via Blackboard. Students are expected to regularly check their Angelo State University email for these messages.

Academic integrity is expected from all students at all times in accordance with [Part I, Section B.1](#) of the Angelo State University *Code of Student Conduct*.

Respect for your fellow classmates is required. Do not act in a manner that may distract others, including but not limited to: talking during lecture, texting, receiving obnoxious phone calls, watching YouTube videos, eating noisily, listening to loud music, walking to the front of the room during lecture just to turn your homework in because you were late to class, etc… If you need to do any of these activities, you are free to leave the classroom.

9: **Professionalism**

Professional engineering standard apply in this class. You are expected to demonstrate a behavior consistent with the conduct of an individual practicing in the engineering profession. You are expected to: (1) come prepared for class; (2) respect faculty and peers; (3) demonstrate responsibility and accountability for your own actions; (4) demonstrate sensitivity and appreciation for diverse cultures, backgrounds, and life experiences; (5) offer and accept constructive criticism in a productive manner; (6) demonstrate an attitude that fosters professional behavior among peers and faculty; (7) be punctual to class meetings; (8) maintain a good work ethic and integrity; and (9) recognize the classroom as a professional workplace.

10: **Graded Material**

10.1: **Final Grades**

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework/Participation/ICAs</td>
<td>20%</td>
</tr>
<tr>
<td>Exam I</td>
<td>20%</td>
</tr>
<tr>
<td>Exam II</td>
<td>20%</td>
</tr>
<tr>
<td>Semester Project</td>
<td>40%</td>
</tr>
</tbody>
</table>

All grades will be assigned on an absolute scale as a minimum. The instructor reserves the right to adjust the weights given to the assignments/homework/exams listed above. Any adjustments will be applied evenly to the entire class and never to the detriment of your grade.
10.2: Grading Scale

90.0% - 100% A
80.0% - 89.9% B
70.0% - 79.9% C
60.0% - 69.9% D
< 60.0% F

10.3: Class Attendance, Participation, Timeliness, and Teamwork

- A portion of your grade will be based on class participation. For full credit, students are expected to arrive to class on time and adequately prepared, meaning that any assigned readings and/or homework are already completed by the time the class period begins.
- Participation and In-class assignment (ICA) points will be assigned at the discretion of the instructor, and may be based upon the following:
 - Attendance throughout the class period
 - Completion of homework, reading, or in-class assignments
 - Willingness to answer a question when called upon (answer does not have to be correct)
 - Effort displayed during group activities or in-class assignments
- Students may work together on in-class assignments, but may have to turn in their own problem work.
- If you will be absent, please make prior arrangements with the instructor. Make-up participation or in-class assignments will not be given.

10.4: Homework

- Homework is due to the instructor by 8:00am on the day specified by the instructor.
- Late homework may not be accepted for full credit, unless previous arrangements with the instructor are made. The instructor recognizes that occasionally, other obligations may prevent you from completing a particular assignment on time, so please discuss with the instructor prior to the due date to make arrangements to complete and turn in the assignment.
- Late homework is subject to additional deductions at the discretion of the instructor.
- Neatness counts! As an engineer and a professional, your work will often be read and scrutinized by others. In some instances, it could be a legal document or a piece of evidence in a court of law. It is your responsibility that the work you prepare is presented in a legible, methodical, and logical manner.
- Any handwritten homework should be performed directly on the printout of the homework or on one side of 8.5” x 11” engineering computation paper, either the “green” paper or a black and white copy of it (available on Blackboard).
- Each problem should be performed on a separate page.
- The solution should include: the problem statement, solution steps, and answer. Key intermediate values should be indicated by underlining or some other means, and the final answer should be boxed/circled.
- Units should be included with all answers.
- Sketches/diagrams should be made with a straight edge and are generally necessary to be included with the problems solved within this course.
- Name, date, and problem info should be included on each page. See the example homework solution posted to Blackboard, which meets all of these requirements.
• Students may collaborate to complete the homework; however, each student must turn in his/her own assignment for grading. Direct copying of other’s work is not allowed and may be subject to disciplinary actions.

• Each homework problem will be assigned a particular value depending on the perceived difficulty and work required to solve it.

• Due to the length of solving problems, it is possible students may only have the opportunity to solve one of each type of problem on the assigned homework. Therefore, it is imperative that each student attempt to solve each homework problem as it may be the only practice you will have to reinforce the learned material.

• **All homework must be accompanied by a brief commentary.** The purpose of the commentary is to reflect on the work performed in each problem. You may include any thoughts about the problem, any difficulties you had, any surprises about the answers, how you might apply the problem to real-world structures, etc... The commentary should be brief (only 2-4 sentences per problem) but thought-provoking and true. The commentary will be graded as part of each problem.

• To facilitate the return of graded homework, a folder containing all graded papers will be passed from student to student at the beginning of class. While the grade will not appear on the front page, it is possible that other students could view your grade for the homework. In accordance with the Family Educational Rights and Privacy Act of 1974 (FERPA), students must consent to disclose these educational records. If you do not consent, please notify me by email and I will separate your homework from the others and return it individually. Otherwise, it is assumed that you consent to this mechanism of return. Graded exams and/or lab reports will be returned individually.

10.5: Exams

• Make-up exams will only be given for extenuating circumstances, unless prior arrangements with the instructor are agreed upon. Proof, such as a doctor’s note or other official document, may be required for unexcused absences during an exam.

• Exams may be open textbook or notes, and the use of the AISC Steel Manuals and a formula/cheat sheet will be permitted. Details will be discussed closer to the exam time.

• Exams I and II will be 1.25 hours long and will be given during the class periods indicated on the course schedule.

• The scheduled final exam period will be used as a weather backup for your semester project presentations. The scheduled final exam period for this course, according to the Angelo State University Final Exam Schedule, is Tuesday, May 5, 2020 from 8:00am-10:00am.

11: Classroom and University Policies and Student Support

11.1: General Policies

All students are required to follow the policies and procedures presented in the Angelo State University Student Handbook and Angelo State University Catalog.

11.2: Student Disability Services

ASU is committed to the principle that no qualified individual with a disability shall, on the basis of disability, be excluded from participation in or be denied the benefits of the services, programs or activities of the university, or be subjected to discrimination by the university, as provided by the Americans with Disabilities Act of 1990 (ADA), the Americans with Disabilities Act Amendments of 2008 (ADAAA) and subsequent legislation.
Student Disability Services is located in the Office of Student Affairs and is the designated campus department charged with the responsibility of reviewing and authorizing requests for reasonable accommodations based on a disability. It is the student’s responsibility to initiate such a request by contacting an employee of the Office of Student Affairs, in the Houston Harte University Center, Room 112, or contacting the department via email at ADA@angelo.edu. For more information about the application process and requirements, visit the Student Disabilities Services Website. The employee charged with the responsibility of reviewing and authorizing accommodation requests is:

Dallas Swafford
Director of Student Disability Services
Office of Student Affairs
325-942-2047
dallas.swafford@angelo.edu
Houston Harte University Center, Room 112

11.3: Title IX Statement

The University prohibits discrimination based on sex, which includes pregnancy, sexual orientation, gender identity, and other types of Sexual Misconduct. Sexual Misconduct is a broad term encompassing all forms of gender-based harassment or discrimination including: sexual assault, sex-based discrimination, sexual exploitation, sexual harassment, public indecency, interpersonal violence (domestic violence and/or dating violence), and stalking. As a faculty member, I am a Responsible Employee meaning that I am obligated by law and ASU policy to report any allegations I am notified of to the Office of Title IX Compliance.

Students are encouraged to report any incidents of sexual misconduct directly to ASU’s Office of Title IX Compliance and the Director of Title IX Compliance/Title IX Coordinator at:

Michelle Boone, J.D.
Director of Title IX Compliance/Title IX Coordinator
325-942-2022
michelle.boone@angelo.edu
Mayer Administration Building, Room 210

Students may also file an incident report anonymously online anytime using the ASU Incident Report Form.

If you are wishing to speak to someone about an incident in confidence you may contact the University Health Clinic and Counseling Center at 325-942-2173 or the ASU Crisis Helpline at 325-486-6345.

For more information about Title IX in general you may visit ASU’s Title IX website.

11.4: Observance of Religious Holy Day

A student who intends to observe a religious holy day should make that intention known in writing to the instructor prior to the absence. See ASU Operating Policy 10.19 Student Absence for Observance of Religious Holy Day for more information.

11.5: Incomplete Grade Policy

It is policy that incomplete grades be reserved for student illness or personal misfortune. Please contact faculty if you have serious illness or a personal misfortune that would keep you from completing course work. Documentation may be required. See ASU Operating Policy 10.11 Grading Procedures for more information.
11.6: Student Conduct Policies

11.6.1: Academic Integrity

Students are expected to maintain complete honesty and integrity in all work. Any student found guilty of any form of dishonesty in academic work is subject of disciplinary action and possible expulsion from ASU.

The College of Science and Engineering adheres to the Statement of Academic Integrity17

11.6.2: Plagiarism

Plagiarism is a serious topic covered in ASU’s Academic Integrity Policy16 in the Student Handbook. Plagiarism is the action or practice of taking someone else’s work, idea, etc., and passing it off as one’s own. Plagiarism is literary theft.

In your discussions and/or your papers, it is unacceptable to copy word-for-word without quotation marks and the source of the quotation. It is expected that you will summarize or paraphrase ideas giving appropriate credit to the source both in the body of your paper and the reference list.

Papers are subject to be evaluated for originality via Turnitin. Resources to help you understand this policy better are available at the ASU Writing Center17.

11.6.3: Copyright Policy

Students officially enrolled in this course should make only one printed copy of the given articles and/or chapters. You are expressly prohibited from distributing or reproducing any portion of course readings in printed or electronic form without written permission from the copyright holders or publishers.

12: Course Specific Information

12.1: Photo/Video Policy

- Students are allowed to take photos/videos of lectures and classroom activities provided the following conditions are met:
 - The capturing of the photo/video is not disruptive to other students or the professor.
 - The photos/videos are for personal use only (not posted publicly), unless otherwise discussed.
 - Fun photos/videos are shared with the professor ☺

13: Instructor Prerogative

The instructor reserves the right to change the policies and procedures of this course when he deems it necessary. Any such changes will be implemented fairly and will typically not be a detriment to your grade. The instructor will notify you of any such changes in a timely manner.

13.1: Diversity and Equity Statement

The instructor strives to promote a living and learning environment for outstanding growth and productivity among all students, faculty and staff. Diversity is broadly defined to include such characteristics as, but not limited to, race, ethnicity, gender, religion, age, disability, sexual orientation, or socio-economic background. Diversity also entails different viewpoints, philosophies, and perspectives. Course activities and attention to these aspects of diversity will help promote a culture of inclusion and belonging, and an environment where diverse opinions, backgrounds and practices have the opportunity to be voiced, heard and respected. All students in my classroom are expected to show respect for one another.
14: Course Outline

The course outline is presented in Table 2. Detailed reading and homework assignments along with updates to this schedule will be provided via Blackboard. Please note the references below to the Segui textbook and throughout the course notes, reference the 5th edition.

Table 2: Course Outline - To Be Updated

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Day</th>
<th>Date</th>
<th>AISC Manual</th>
<th>Segui 5th ed. Text</th>
<th>Notes/Topic</th>
<th>Assignment Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Tuesday</td>
<td>1/14</td>
<td></td>
<td>Syllabus, Course Discussion, Introduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>Thursday</td>
<td>1/16</td>
<td>Ch. C; App. 1</td>
<td>Stability: Direct Analysis Method</td>
<td>HW 01; P 01</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>Tuesday</td>
<td>1/21</td>
<td>ICA 01: Direct Analysis Stability Module (VIN 245)</td>
<td></td>
<td>V 01; V 02</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>Thursday</td>
<td>1/23</td>
<td>Ch. B Ch. 2</td>
<td>LRFD Design Methodology; Tributary Loads</td>
<td>HW 02; P 02</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>Tuesday</td>
<td>1/28</td>
<td>ICA 02: LRFD Analysis Problems</td>
<td>V 03; V 04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>Thursday</td>
<td>1/30</td>
<td>Ch. A Ch. 1</td>
<td>Steel- A History; The Basics; AISC Steel Shapes; Stress-Strain; AISC Manual Intro</td>
<td>HW 03; V 05</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>Tuesday</td>
<td>2/4</td>
<td></td>
<td>ICA 03: AISC Manual Challenge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>Thursday</td>
<td>2/6</td>
<td>Ch. D Ch. 3</td>
<td>Tension Members- Yielding, Fracture</td>
<td>HW 04; P 03</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>Tuesday</td>
<td>2/11</td>
<td>ICA 04: Yielding, Fracture Problems</td>
<td>V 07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Thursday</td>
<td>2/13</td>
<td>Ch. D, J Ch. 3</td>
<td>Tension Members- Block Shear, Design</td>
<td>HW 05</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Tuesday</td>
<td>2/18</td>
<td>ICA 05: Block Shear, Design Problems</td>
<td>V 08A; V 08B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Thursday</td>
<td>2/20</td>
<td>Ch. J Ch. 7</td>
<td>Bolted Connections- Bearing, Shear Tear Out, Bolt Shear</td>
<td>HW 06; P 04</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Tuesday</td>
<td>2/25</td>
<td></td>
<td>ICA 06: Bolted Connection Problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Thursday</td>
<td>2/27</td>
<td>Ch. J Ch. 7</td>
<td>Bolted Connections- Slip ICA 07: High Strength Bolt Lab</td>
<td>HW 07</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Tuesday</td>
<td>3/3</td>
<td>Ch. J Ch. 7</td>
<td>Welded Connections- Processes, Analysis, Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Thursday</td>
<td>3/5</td>
<td></td>
<td>EXAM I</td>
<td>P 05</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Tuesday</td>
<td>3/10</td>
<td></td>
<td>NO CLASS- SPRING BREAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Thursday</td>
<td>3/12</td>
<td></td>
<td>NO CLASS- SPRING BREAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Tuesday</td>
<td>3/17</td>
<td>ICA 08: Weld Connection Problems; Weld Lab</td>
<td>P 06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Tuesday</td>
<td>3/19</td>
<td>Ch. E, B Ch. 4</td>
<td>Compression Members- Euler Buckling; Inelastic Buckling</td>
<td>HW 08</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Thursday</td>
<td>3/24</td>
<td></td>
<td>ICA 09: Compression Member Problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Thursday</td>
<td>3/26</td>
<td>Ch. E, B Ch. 4</td>
<td>ICA 10: Compression Member Design</td>
<td>HW 09</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Thursday</td>
<td>3/31</td>
<td>Ch. F,B,G Ch. 5</td>
<td>Beams- Yield Moment, Plastic Moment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Tuesday</td>
<td>4/2</td>
<td></td>
<td>ICA 11: My, Mp Problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Thursday</td>
<td>4/7</td>
<td>Ch.F,B,G Ch. 5</td>
<td>Beams- Local Buckling, LTB, Shear, Design</td>
<td>HW 10</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Thursday</td>
<td>4/9</td>
<td></td>
<td>ICA 12: Beam Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Tuesday</td>
<td>4/14</td>
<td>Ch.C,H Ch. 6</td>
<td>Beam-Columns; Effective Length Method</td>
<td>HW 11</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Thursday</td>
<td>4/16</td>
<td></td>
<td>Special Topics; Design Project</td>
<td>P 07</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Tuesday</td>
<td>4/21</td>
<td></td>
<td>EXAM II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Thursday</td>
<td>4/23</td>
<td></td>
<td>NO CLASS- NASCC STEEL CONFERENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Tuesday</td>
<td>4/28</td>
<td></td>
<td>Special Topics; Design Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Thursday</td>
<td>4/30</td>
<td></td>
<td>DESIGN PROJECT PRESENTATIONS 8:00-9:15am</td>
<td>P 08-10</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Tuesday</td>
<td>5/5</td>
<td></td>
<td>NO FINAL EXAM FOR THIS CLASS</td>
<td>P 11</td>
<td></td>
</tr>
</tbody>
</table>
15: End Notes: Complete Hyperlinks From Syllabus

1 http://www.angelo.edu/content/profiles/6463-anthony-d-battistini
2 https://www.aisc.org/aisc-membership/member-types/student/
3 http://www.mastan2.com/download.html
4 http://edu.iesweb.com/
5 https://blackboard.angelo.edu/
6 https://blackboard.angelo.edu/
8 http://www.angelo.edu/services/registrar-office/final.php
9 http://www.angelo.edu/student-handbook/
10 http://www.angelo.edu/catalogs/
11 http://www.angelo.edu/services/disability-services/
12 https://www.angelo.edu/incident-form
13 https://www.angelo.edu/title-ix
14 http://www.angelo.edu/content/files/14206-op-1019-student-absence-for-observance-of
15 http://www.angelo.edu/content/files/14197-op-1011-grading-procedures
16 http://www.angelo.edu/student-handbook/community-policies/academic-integrity.php
17 http://www.angelo.edu/dept/writing-center/academic_honesty.php