1: **Course Number and Name**
 a. **ENGR 2301**: Engineering Mechanics – Statics, Spring 2021
 b. Section 010, MWF 8:00 – 8:50 a.m.; Lab Section 01Z, T 8:00 – 8:50 a.m.

2: **Credits and Contact Hours**
 a. **Credits**: 3
 b. **Contact Hours**: 3 hours/week (Classroom)

3: **Instructor Information**
 a. **Course Coordinator**: Gustavo Vargas-Silva
 b. **Instructor**: Gustavo Vargas-Silva, 325-486-5540, gustavo.vargas-silva@angelo.edu. Office: VIN 270. For office hours see faculty homepage.

4: **Required Course Materials**
 The textbook listed below is *recommended* only. The notes provided in class may be sufficient to learn the required material; however, I would prefer that you have a Statics textbook available for reference. The concepts presented in this course may be more challenging than those in physics and calculus and the use of a textbook for extra clarification may be required. There are numerous textbooks/editions available that would be suitable. The class notes will reference chapters/sections in the recommended textbook.

 It is also recommended that you purchase a binder to organize your notes for the class.

5: **Technology Requirements**
 To successfully complete this course in an on-line fashion, you need the following technology:

 - Computer capable of running Windows 7 or later, or Mac OSX 10.8 or later
 - The latest version of a web browser (e.g., Google Chrome, Internet Explorer, Firefox, Safari)
 - Microsoft Office Suite or a compatible Open Office Suite
 - Adobe Acrobat Reader
 - High-Speed Internet Access
 - Ethernet adapter cable required (wireless connections can drop during Bb Collaborate sessions)
 - Webcam

6: **Specific Course Information**
 a. **Catalog Description**: Basic theory of engineering mechanics, using calculus, involving the description of forces, moments, and couples acting on stationary engineering structures; equilibrium in two and three dimensions; free-body diagrams; friction; centroids; centers of gravity; and moments of inertia.
 c. **Prerequisites**: PHYS 2425 Fundamentals of Physics I
 Credit for or concurrent enrollment in MATH 2314 Calculus II.
7: Specific Goals for the Course

a. Course Learning Outcomes:
 1. Calculate resultant force vectors in two and three dimensions.
 2. Construct accurate free body diagrams and identify the loads/support conditions acting on structural systems.
 3. Apply equilibrium equations to particles and rigid bodies.
 4. Analyze internal forces in trusses and beams.
 5. Analyze impending motion of rigid bodies including the effect of friction.
 6. Determine the centroid and moment of inertia of member cross sections.

b. Course Learning Outcome Mapping to ABET Criterion 3 Student Outcomes:

Table 1: Course Learning Outcomes mapped to ABET Student Outcomes

<table>
<thead>
<tr>
<th>ABET Student Outcomes</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Solve Problems</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2. Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Communication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Ethics & Professionalism</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Teamwork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Experimentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Acquire New Knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8: Topics Covered

1. General Principles of Mechanics
2. Force Vectors
3. Equilibrium of a Particle
4. Force System Resultants
5. Equilibrium of a Rigid Body
6. Structural Analysis
7. Internal Forces
8. Dry Friction
9. Center of Gravity and Centroid
10. Moments of Inertia
9: Course Delivery and Communications

9.1: Delivery Method(s)

Examples:

This is a face-to-face course with learning resources and supplemental materials posted in Blackboard\(^1\). The course will meet three 1-hour lectures per week, and one 1-hour lab session per week, where the instructor will be communicating engineering theories and information to the students.

9.2: Communications

Faculty will respond to email and/or telephone messages within 24 hours during working hours Monday through Friday. Weekend messages may not be returned until Monday.

Written communication via email: All private communication will be done exclusively through your ASU email address. Check frequently for announcements and policy changes. In your emails to faculty, include the course name and section number in your subject line.

Virtual communication: Office hours and/or advising may be done with the assistance of the telephone, Bb Collaborate, Skype, etc.

10: Professionalism

Professional engineering standards apply in this class. You are expected to demonstrate a behavior consistent with the conduct of an individual practicing in the engineering profession. You are expected to: (1) come prepared for class; (2) respect faculty and peers; (3) demonstrate responsibility and accountability for your own actions; (4) demonstrate sensitivity and appreciation for diverse cultures, backgrounds, and life experiences; (5) offer and accept constructive criticism in a productive manner; (6) demonstrate an attitude that fosters professional behavior among peers and faculty; (7) be punctual to class meetings; (8) maintain a good work ethic and integrity; and (9) recognize the classroom as a professional workplace.

11: Graded Material

11.1: Class Attendance, Participation, Timeliness and Teamwork

The number one complaint of engineering clients is the timeliness of deliverables (reports, drawings, specifications, etc.). As a professional engineer you will be expected to arrive at scheduled meetings on time and prepared. Late proposals are not generally accepted. Late specifications or drawings may cost the engineer a monetary penalty. Professional engineering standards apply in this course. You are expected to meet every class meeting on time and prepared. Attendance will be taken. Should you find it necessary to miss a class for any reason, you are expected to notify your instructor as early as the absence is known—preferably before the absence. It’s important that you communicate clearly your instructors.

11.2: Reading Assignments and Homework

You will be given reading and homework assignments nearly every lesson. Reading assignments will come from the assigned textbooks or other materials provided or available via the web.

Homework should be solved handwritten and be turned-in at the beginning of the class on the day it is due (course schedule).
Neatness counts! As an engineer and a professional, your work will often be read and scrutinized by others. In some instances, it could be a legal document or a piece of evidence in a court of law. It is your responsibility that the work you prepare is presented in a legible, methodical, and logical manner. Homework grades will primarily be based on thoroughness, neatness and completeness.

Any homework should be performed on one side of 8.5” x 11” engineering computation paper, either the “green” paper or a black and white copy of it. All pages must be stapled together. Each problem should be performed on a separate page.

The solution should include: the problem statement, solution steps, and answer. Key intermediate values should be indicated by underlining or some other means, and the final answer should be boxed/circled.

Units should be included with all answers.

Sketches/diagrams should be made with a straight edge.

Name, date, and problem info should be included on each page. See the example homework solution posted to Blackboard, which meets all of these requirements.

Students may collaborate to complete the homework; however, each student must turn in his/her own assignment for grading. Direct copying of other’s work is not allowed and may be subject to disciplinary actions.

Graded exams, homework and/or lab reports will be returned individually.

11.3: Exams

This course will have three exams and a final. Exams will not be open textbook or notes, but a formula sheet must be prepared individually and handwritten by each student. Details will be discussed closer to the exam time. Exams I, II, and III will be 50 minutes long and will be given during the class periods indicated on the course schedule. The final exam will be given during the university specified exam time, which for this course will be Monday, May 10, 2021 from 8:00 -10:00 a.m.

Make-up exams will only be given for extenuating circumstances, unless prior arrangements with the instructor are agreed upon. Proof, such as a doctor’s note or other official document, may be required for unexcused absences during an exam.

11.4: Grades: Weighting and Letter Grades

The weighting system shown in Table 2 will be used in determining final grade for the course.

Table 2: Grade Weighting

<table>
<thead>
<tr>
<th>Item</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>10%</td>
</tr>
<tr>
<td>Exam I</td>
<td>18%</td>
</tr>
<tr>
<td>Exam II</td>
<td>16%</td>
</tr>
<tr>
<td>Exam III</td>
<td>16%</td>
</tr>
<tr>
<td>Final exam</td>
<td>20%</td>
</tr>
<tr>
<td>Final project</td>
<td>20%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>
All grades will be assigned on an absolute scale as a minimum. The instructor reserves the right to adjust the weights given to the assignments/homework/exams listed above. Any adjustments will be applied evenly to the entire class and never to the detriment of your grade.

The instructor will determine letter grades for the course using his professional judgment, and the following standards as described in the University Catalog:

A = excellent work
B = good work
C = average work
D = poor work
F = failing work

12: Classroom and University Policies and Student Support

12.1: General Policies

All students are required to follow the policies and procedures presented in the Angelo State University Student Handbook\(^3\) and Angelo State University Catalog\(^4\).

12.2: Student Disability Services

ASU is committed to the principle that no qualified individual with a disability shall, on the basis of disability, be excluded from participation in or be denied the benefits of the services, programs or activities of the university, or be subjected to discrimination by the university, as provided by the Americans with Disabilities Act of 1990 (ADA), the Americans with Disabilities Act Amendments of 2008 (ADAAA) and subsequent legislation.

Student Disability Services is located in the Office of Student Affairs, and is the designated campus department charged with the responsibility of reviewing and authorizing requests for reasonable accommodations based on a disability. It is the student’s responsibility to initiate such a request by contacting an employee of the Office of Student Affairs, in the Houston Harte University Center, Room 112, or contacting the department via email at ADA@angelo.edu. For more information about the application process and requirements, visit the Student Disability Services website\(^5\). The employee charged with the responsibility of reviewing and authorizing accommodation requests is:

Dallas Swafford
Director of Student Disability Services
Office of Student Affairs
325-942-2047
dallas.swafford@angelo.edu
Houston Harte University Center, Room 112

12.3: Title IX at Angelo State University

The University prohibits discrimination based on sex, which includes pregnancy, sexual orientation, gender identity, and other types of Sexual Misconduct. Sexual Misconduct is a broad term encompassing all forms of gender-based harassment or discrimination including: sexual assault, sex-based discrimination, sexual exploitation, sexual harassment, public indecency, interpersonal violence (domestic violence and/or dating violence), and stalking. As a faculty member, I am a Responsible Employee meaning that I am obligated by law and ASU policy to report any allegations I am notified of to the Office of Title IX Compliance.

Students are encouraged to report any incidents of sexual misconduct directly to ASU’s Office of Title IX Compliance and the Director of Title IX Compliance/Title IX Coordinator at:

Michelle Boone, J.D.
Director of Title IX Compliance/Title IX Coordinator
Mayer Administration Building, Room 210
325-486-6357, michelle.boone@angelo.edu

You may also file a report online 24/7 at www.angelo.edu/incident-form.

If you are wishing to speak to someone about an incident in confidence you may contact the University Health Clinic and Counseling Center at 325-942-2173 or the ASU Crisis Helpline at 325-486-6345.

For more information about resources related to sexual misconduct, Title IX, or Angelo State’s policy please visit: www.angelo.edu/title-ix.

12.4: Observance of Religious Holy Day

A student who intends to observe a religious holy day should make that intention known in writing to the instructor prior to the absence. See ASU Operating Policy 10.19 Student Absence for Observance of Religious Holy Day for more information.

12.5: Incomplete Grade Policy

It is policy that incomplete grades be reserved for student illness or personal misfortune. Please contact faculty if you have serious illness or a personal misfortune that would keep you from completing course work. Documentation may be required. See ASU Operating Policy 10.11 Grading Procedures for more information.

12.6: Required Use of Masks/Facial Coverings

As a member of the Texas Tech University System, Angelo State University has adopted the mandatory Facial Covering Policy to ensure a safe and healthy classroom experience. Current research on the COVID-19 virus suggests there is a significant reduction in the potential for transmission of the virus from person to person by wearing a mask/facial covering that covers the nose and mouth areas. Therefore, in compliance with the university policy students in this class are required to wear a mask/facial covering before, during, and after class. Faculty members may also ask you to display your daily screening badge as a prerequisite to enter the classroom. You are also asked to maintain safe distancing practices to the best of your ability. For the safety of everyone, any student not appropriately wearing a mask/facial covering will be asked to leave the classroom immediately. The student will be responsible to make up any missed class content or work. Continued non-compliance with the Texas Tech University System Policy may result in disciplinary action through the Office of Student Conduct.

12.7: Student Conduct Policies

12.7.1: Academic Integrity

Students are expected to maintain complete honesty and integrity in all work. Any student found guilty of any form of dishonesty in academic work is subject of disciplinary action and possible expulsion from ASU.

12.7.2: Plagiarism

Plagiarism is a serious topic covered in ASU’s Academic Integrity policy in the Student Handbook. Plagiarism is the action or practice of taking someone else’s work, idea, etc., and passing it off as one’s own. Plagiarism is literary theft.

In your discussions and/or your papers, it is unacceptable to copy word-for-word without quotation marks and the source of the quotation. It is expected that you will summarize or paraphrase ideas giving appropriate credit to the source both in the body of your paper and the reference list.
Papers are subject to be evaluated for originality via Turnitin or SafeAssign. Resources to help you understand this policy better are available at the ASU Writing Center.

12.7.3: Copyright Policy

Students officially enrolled in this course should make only one printed copy of the given articles and/or chapters. You are expressly prohibited from distributing or reproducing any portion of course readings in printed or electronic form without written permission from the copyright holders or publishers.

13: Course Outline

The course outline is presented in Table 3. Detailed reading and homework assignments along with updates to this schedule will be provided in class or via Bb. The following schedule may be modified as the semester progresses.

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Week</th>
<th>Day</th>
<th>Date</th>
<th>Text</th>
<th>Handout</th>
<th>Notes/Topic</th>
<th>Homework</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>M</td>
<td>Jan 25</td>
<td>1.1-6</td>
<td>01</td>
<td>Introduction, Basic quantities, Units</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>W</td>
<td>Jan 27</td>
<td>2.1-3</td>
<td>02</td>
<td>Vectors, Operations, Force Addition</td>
<td>01</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>F</td>
<td>Jan 29</td>
<td>2.4</td>
<td>03</td>
<td>Coplanar Force Addition</td>
<td>02</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>M</td>
<td>Feb 01</td>
<td>2.5-6</td>
<td>04</td>
<td>Cartesian Vectors</td>
<td>03</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>W</td>
<td>Feb 03</td>
<td>2.7-8</td>
<td>05</td>
<td>Position Vectors, Force along a line</td>
<td>04</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>F</td>
<td>Feb 05</td>
<td>2.9</td>
<td>06</td>
<td>Dot Product, Force Projection</td>
<td>05</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>M</td>
<td>Feb 08</td>
<td>3.1-3</td>
<td>07</td>
<td>Particle Equilibrium, FBD</td>
<td>06</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>W</td>
<td>Feb 10</td>
<td>3.4</td>
<td>08</td>
<td>3D Force Systems</td>
<td>07</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>F</td>
<td>Feb 12</td>
<td>4.1-4</td>
<td>09</td>
<td>2D Moments</td>
<td>08</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>M</td>
<td>Feb 15</td>
<td>4.1-4</td>
<td>10</td>
<td>3D Moments</td>
<td>09</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>W</td>
<td>Feb 17</td>
<td>4.1-4</td>
<td>11</td>
<td>3D Moments</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>F</td>
<td>Feb 19</td>
<td>4.6</td>
<td>12</td>
<td>Couples</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>M</td>
<td>Feb 22</td>
<td>4.7-8</td>
<td>13</td>
<td>Reducing Force-Couple Systems</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>W</td>
<td>Feb 24</td>
<td>4.9</td>
<td>14</td>
<td>Distributed Load</td>
<td>13</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>F</td>
<td>Feb 26</td>
<td>-</td>
<td>-</td>
<td>EXAM I</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>M</td>
<td>Mar 01</td>
<td>5.1-2</td>
<td>15</td>
<td>Rigid Body FBDs</td>
<td>14</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>W</td>
<td>Mar 03</td>
<td>5.3-4</td>
<td>16</td>
<td>2D Equilibrium</td>
<td>15</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
<td>F</td>
<td>Mar 05</td>
<td>5.3-4</td>
<td>17</td>
<td>3D Equilibrium</td>
<td>16</td>
</tr>
<tr>
<td>18</td>
<td>7</td>
<td>M</td>
<td>Mar 08</td>
<td>5.5-6</td>
<td>18</td>
<td>Free body diagrams, Equilibrium</td>
<td>17</td>
</tr>
<tr>
<td>19</td>
<td>7</td>
<td>W</td>
<td>Mar 10</td>
<td>5.7</td>
<td>19</td>
<td>Constraints</td>
<td>18</td>
</tr>
<tr>
<td>20</td>
<td>7</td>
<td>F</td>
<td>Mar 12</td>
<td>6.1-2</td>
<td>20</td>
<td>Trusses- Method of Joints</td>
<td>19</td>
</tr>
<tr>
<td>21</td>
<td>8</td>
<td>M</td>
<td>Mar 15</td>
<td>6.3</td>
<td>21</td>
<td>ZFsMs</td>
<td>20</td>
</tr>
<tr>
<td>22</td>
<td>8</td>
<td>W</td>
<td>Mar 17</td>
<td>6.4</td>
<td>22</td>
<td>Trusses- Method of Sections</td>
<td>21</td>
</tr>
<tr>
<td>23</td>
<td>8</td>
<td>F</td>
<td>Mar 19</td>
<td>6.6</td>
<td>23</td>
<td>Frames</td>
<td>22</td>
</tr>
<tr>
<td>24</td>
<td>9</td>
<td>M</td>
<td>Mar 22</td>
<td>6.6</td>
<td>24</td>
<td>Machines</td>
<td>23</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>W</td>
<td>Mar 24</td>
<td>-</td>
<td>-</td>
<td>EXAM II</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>F</td>
<td>Mar 26</td>
<td>7.1</td>
<td>25</td>
<td>Internal Forces and Moments</td>
<td>24</td>
</tr>
<tr>
<td>26</td>
<td>10</td>
<td>M</td>
<td>Mar 29</td>
<td>7.2</td>
<td>26</td>
<td>V and M Equations and Diagrams</td>
<td>25</td>
</tr>
<tr>
<td>27</td>
<td>10</td>
<td>W</td>
<td>Mar 31</td>
<td>7.3</td>
<td>27</td>
<td>Relations between w, V and M</td>
<td>26</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>F</td>
<td>Apr 02</td>
<td>-</td>
<td>-</td>
<td>SPRING HOLIDAY</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td>11</td>
<td>M</td>
<td>Apr 05</td>
<td>7.3</td>
<td>28</td>
<td>Relations between w, V and M</td>
<td>27</td>
</tr>
<tr>
<td>29</td>
<td>11</td>
<td>W</td>
<td>Apr 07</td>
<td>8.1-2</td>
<td>29</td>
<td>Friction</td>
<td>28</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>F</td>
<td>Apr 09</td>
<td>8.1-2</td>
<td>30</td>
<td>Friction</td>
<td>29</td>
</tr>
<tr>
<td>31</td>
<td>12</td>
<td>M</td>
<td>Apr 12</td>
<td>8.1-2</td>
<td>31</td>
<td>Friction</td>
<td>30</td>
</tr>
<tr>
<td>32</td>
<td>12</td>
<td>W</td>
<td>Apr 14</td>
<td>8.1-2</td>
<td>32</td>
<td>Friction</td>
<td>31</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>F</td>
<td>Apr 16</td>
<td>-</td>
<td>-</td>
<td>EXAM III</td>
<td>-</td>
</tr>
</tbody>
</table>
14: Instructor Prerogative
The instructor reserves the right to change the policies and procedures of this course when he deems it necessary. Any such changes will be implemented fairly and will typically not be a detriment to your grade. The instructor will notify you of any such changes in a timely manner.

15: Modifications to the Syllabus
This syllabus, including grade evaluation and course schedule, is subject to modification. In particular, the COVID-19 pandemic may require significant changes in course delivery and content on potentially short notice.

16: End Notes

1 http://angelo.blackboard.com
2 http://www.angelo.edu/services/registrar_services/final.php
3 http://www.angelo.edu/student-handbook/
4 http://www.angelo.edu/catalogs/
5 http://www.angelo.edu/services/disability-services/
6 http://www.angelo.edu/incident-form
7 http://www.angelo.edu/title-ix
8 http://www.angelo.edu/content/files/14206-op-1019-student-absence-for-observance-of
9 https://www.angelo.edu/content/files/14197-op-1011-grading-procedures
10 http://www.texastech.edu/downloads/ttus-policy-face-coverings.pdf
11 http://www.angelo.edu/student-handbook/community-policies/academic-integrity.php
12 http://www.angelo.edu/dept/writing_center/academic_honesty.php